
A Fault-Tolerant Framework for Asynchronous
Iterative Computations in Cloud Environments

Zhigang Wang1 Lixin Gao2 Yu Gu1 Yubin Bao1 Ge Yu1

1Northeastern University, China
2University of Massachusetts Amherst, USA

wangzhiganglab@gmail.com, lgao@ecs.umass.edu, {guyu,baoyubin,yuge}@mail.neu.edu.cn

Abstract
Many graph algorithms are iterative in nature and can be
supported by distributed memory-based systems in a syn-
chronous manner. However, an asynchronous model has
been recently proposed to accelerate iterative computations.
Nevertheless, it is challenging to recover from failures in
such a system, since a typical checkpointing based ap-
proach requires many expensive synchronization barriers
that largely offset the gains of asynchronous computations.

This paper first proposes a fault-tolerant framework that
performs recovery by leveraging surviving data, rather than
checkpointing. Our fault-tolerant approach guarantees the
correctness of computations. Additionally, a novel asyn-
chronous checkpointing method is introduced to further
boost the recovery efficiency at the price of nearly zero over-
head. Our solutions are implemented on a prototype system,
Faiter, to facilitate tolerating failures for asynchronous com-
putations. Also, Faiter performs load balancing on recovery
by re-assigning lost data onto multiple machines. We con-
duct extensive experiments to show the effectiveness of our
proposals using a broad spectrum of real-world graphs.

Categories and Subject Descriptors H.3.4 [System and
Software]: Distributed systems

General Terms Algorithms, Design, Performance, Theory

Keywords fault-tolerance, iterative algorithms, distributed
memory-based systems, asynchronous computations

1. Introduction
Iterative graph algorithms have been widely used in numer-
ous applications with billion-node graphs. In order to effi-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SoCC ’16, October 05-07, 2016, Santa Clara, CA, USA.
c⃝ 2016 ACM. ISBN 978-1-4503-4525-5/16/10. . . $15.00.

DOI: http://dx.doi.org/10.1145/2987550.2987552

ciently handle large graphs, distributed systems have been
developed [1, 2, 15, 23, 31], most of which mainly focus on
memory-based computations [2, 15, 31], including Pregel,
Spark and Maiter. Fault-tolerance is one of the core compo-
nents in such systems due to the following two reasons. First,
most distributed systems usually run on a cluster consisting
of commodity machines, and failures on these machines may
occur frequently, especially when a large number of compu-
tational nodes are required. Second, iterative computations
typically require many iterations, which inevitably increases
the likelihood of encountering failures.

For simplicity, existing systems usually employ a syn-
chronous model to perform computations through a series of
iterations separated by explicit global barriers. Within one
iteration, computational nodes coordinate with each other to
synchronize the progress. Nodes running faster thereby need
to block themselves so that they can wait for others to com-
plete computations. Because of the expensive synchroniza-
tion overhead, asynchronous systems, such as Maiter [31]
and its variants [26, 27], have been recently proposed to ac-
celerate the convergence speed of iterative algorithms by re-
moving synchronization barriers. The issue we investigate
in this paper is thereby to find an efficient fault-tolerant so-
lution tailored for Maiter.

Challenges: Currently, although many efforts have been de-
voted to fault-tolerance, most of them focus on synchronous
computations, such as checkpointing [15] and its variants
[20, 24, 25] used in Pregel-like systems, and lineage [28]
employed in Spark. These techniques are far from ideal for
asynchronous computations. First, the checkpointing solu-
tion typically archives data periodically and hence any fail-
ure can be recovered by rolling back to the most recent avail-
able checkpoint. However, archiving data requires an ex-
plicit barrier among nodes to coordinate the progress, and
computing work must be suspended. That exposes the asyn-
chronous engine to the same inefficiency of a synchronous
engine that the former is trying to address. On the other hand,
the basic idea behind lineage is tracking the coarse-grained
dependency among data sets instead of data themselves, in
order to save the storage space and network bandwidth re-

71

quired by checkpointing. It, however, lacks built-in support
for fine-grained updates in asynchronous systems.

The well-known asynchronous system GraphLab [14] re-
moves the explicit barrier requirement for checkpointing, but
computations are still suspended when they are in conflict
with the checkpointing operations.

Our contributions: This paper first proposes a novel failure
recovery solution without rolling back, referred to as FR-
WORB. Upon failures, FR-WORB preserves data on surviv-
ing nodes without rolling back. A special restarting point
is automatically constructed where computations interrupted
by failures can be continued. We prove the correctness of our
solution, i.e., the continued computations will converge to
the same point as if failures have never occurred. FR-WORB
can leverage data on surviving nodes to potentially acceler-
ate recovering lost data, while simultaneously keeping refin-
ing surviving data without pausing. Intrinsically, FR-WORB
is a reactive approach where no checkpoint is written be-
fore failures. Thus, there is no overhead for checkpoint-
ing. There exist some recently published reactive approaches
[7, 17, 19, 22]. However, they either consume large amounts
of memory [32], or raise nontrivial challenges for users to
design a complex recovery function [24].

Additionally, we design an improved solution with asyn-
chronous checkpointing, termed FR-WAC, where recovery
computations of the lost data can be performed from the
most recent available checkpoint instead from scratch. As re-
computing work is reduced, FR-WAC can further boost the
recovery efficiency. In particular, archiving operations are
separated from computations and hence neither synchroniza-
tion barriers among nodes nor coordination between data
persistence and computing work is required. The overhead
caused by checkpointing is thereby nearly zero and the im-
pact on asynchronous engine can be negligible.

Finally, we develop a prototype system Faiter on top of
the asynchronous system Maiter, to implement our fault-
tolerant methods. In the system design, we perform load bal-
ancing on recovery. By assigning recovery workload to mul-
tiple nodes, the recovery time can be significantly dropped.
Key issues, such as the data assignment policy and how to
efficiently route messages to correct targets after changing
the data placement, are discussed in detail.

The major contributions are summarized as below.

• We present a novel fault-tolerant solution FR-WORB
for asynchronous systems. Since no checkpoint is writ-
ten before failures, the overhead caused is zero. Mean-
while, FR-WORB provides prominent performance be-
cause data on surviving nodes perform computations pro-
gressively without rolling back or pausing and can be uti-
lized to accelerate recovering lost data on failed nodes.

• An improved solution FR-WAC is proposed to further
boost the recovery performance by recomputing lost data
from the most recent available checkpoint instead from

scratch. FR-WAC employs an asynchronous checkpoint-
ing mechanism to reduce its overhead to nearly zero,
which is naturally suitable for asynchronous systems.

• We propose a load balancing solution for recovering lost
data by assigning the recovery workload on a failed node
to multiple nodes for efficiency.

Paper organization: The remainder of this paper is orga-
nized as follows. Section 2 introduces preliminaries about
asynchronous computations and the challenges of tolerating
failures. Section 3 presents our failure recovery methods and
proves the correctness. Section 4 describes the system design
of Faiter, especially for load balance. Section 5 reports our
experimental studies. Section 6 highlights the related work.
Finally, we conclude this work in Section 7.

2. Preliminaries
Currently, distributed iterative graph processing systems
usually keep data in main memory for I/O-efficiency [8,
9, 14, 15, 31], and many of them, like Maiter [31], employ
an asynchronous computation model [8, 14, 31] to accel-
erate computations. In the following, we briefly review the
asynchronous memory-based system taking Maiter as an ex-
ample, and then discuss the challenges of tolerating failures.

2.1 Asynchronous Memory-based System: Maiter
We model a graph as a directed graph G=(V ,E), where V is
a set of vertices and E is a set of outgoing edges (pairs of
vertices). Given an edge (i, j), i/ j is the source/destination
vertex. The in-neighbors of i as Γin(i) is a set of vertices that
have an edge linking to i, and out-neighbors as Γout (i) is a
set of vertices that i has an edge to link. The in/out-degree
is thereby defined as the number of in/out-neighbors, i.e.,
|Γin(i)|/|Γout(i)|. In distributed systems, G is partitioned onto
multiple computational nodes to be processed in parallel.

Iterative graph algorithms can be naturally implemented
in a synchronous system through a sequence of iterations
separated by explicit barriers. Typically, the workload at the
(k+1)-th iteration consists of computing state vk+1

j for any
vertex j ∈ V by consuming messages received at the k-th
iteration, and sending new messages based on vk+1

j . Eq. (1)
shows it mathematically, where c j is an algorithm-specified
constant. g{i, j} and ⊕ are user-defined functions used to
generate a message from i to j based on vi and compute
vertex states, respectively. In general, iterations terminate
until a fixed point is reached, i.e., every v j does not change
between two consecutive iterations.

vk+1
j = c j⊕ ∑

i∈Γin(j)

⊕g{i, j}(v
k
i) (1)

Take the PageRank [4] algorithm as an example. PageRank
computes a score, i.e., v j, for every web page j to eval-
uate its importance. At the k-th iteration, every web page
i sends its tentative score divided by its out-degree along

72

outgoing links, i.e., g{i, j}(vi) = d · vk
i

|Γout (i)| , where d is a user-
defined decay factor and 0 < d < 1. At the next iteration, a
new score is computed by summing up received values, i.e.,

vk+1
j = (1− d)+∑i∈Γin(j)(d ·

vk
i

|Γout (i)|). Here, ’⊕’ is ’+’ and
c j = (1−d) for any vertex j.

Maiter, on the other hand, employs a delta-based asyn-
chronous computation model where messages are generated
based on the “change” of vi, to avoid repeatedly processing
messages from unchanged vi, and synchronization barriers
are removed to eliminate blocking overheads.

Specifically, when g{i, j}(x) has the distributed property
over ’⊕’, and ’⊕’ has the communicative and associate prop-
erties, iterative computations can be performed as follows.
For vertex j on node N(j) where j resides, it carries two
values: v j and ∆v j, where ∆v j indicates the “change” of v j
since j’s last update. ∆v j is computed by accumulating delta-
based messages g{i, j}(∆vi) from in-neighbors in the ⊕ man-
ner, as shown in Eq. (2). At anytime, as shown in Eq. (3),
j is possibly scheduled to update its v j by consuming ∆v j.
∆v j is further forwarded to out-neighbors and then reset to 0
so that it is cleared and can accumulate newly received mes-
sages. 0 is an abstract zero value satisfying that x⊕0 = x and
g{i, j}(0) = 0. For PageRank, it is 0.

receive :

{
When receiving g{i, j}(∆vi) from N(i);

∆v j← ∆v j⊕g{i, j}(∆vi), i ∈ Γin(j);
(2)

update :

If ∆v j ̸= 0
v j← v j⊕∆v j;

∀h ∈ Γout(j), If g{ j,h}(∆v j) ̸= 0
send g{ j,h}(∆v j) to N(h);

∆v j← 0;

(3)

In Maiter, g{i, j}(∆vi) is always closer to 0 than ∆vi. Thus,
after performing Eqs. (2) and (3), asynchronous computa-
tions converge when every ∆v j = 0. In particular, the initial
input values of v j and ∆v j are given as v0

j = 0 and ∆v0
j = c j, to

guarantee that an algorithm can converge to the same fixed
point as achieved in the synchronous model. Besides, it has
been validated that priority scheduling, which uses a priority
(i.e., ∆v j) to determine the order of updating v j, can acceler-
ate the convergence speed [30], because vertices with large
“change” play an important role in determining v j.

2.2 Fault-tolerance for Maiter
Failures may be encountered when running computations
in a distributed system. Till now, most systems, including
Maiter, employ a Master-Slave framework where a master
node is in charge of monitoring the cluster health by pe-
riodically checking status information collected from slave
nodes. Obviously, the master node, network and slave nodes

may fail, but this paper focuses on the last two only because
the whole system will crash when the master node fails. A
slave node is marked as failed by the master if the elapsed
time since its last report exceeds a threshold.

It is challenging to recover failures in an asynchronous
memory-based system. Upon a failure event, the memory-
resident data on failed nodes are lost. To recover them and
continue computations, a conventional approach is to check-
point by archiving data periodically beforehand and restart
computations from the last available checkpoint [15, 20, 24,
25]. However, existing checkpointing methods largely de-
grade the performance of asynchronous computations, as
vertex updates must be paused when archiving data, and
global synchronization barriers are usually required.

3. Failure Recovery for Maiter
This section introduces two failure recovery methods for
Maiter. In particular, we describe how to guarantee that they
can converge to the same fixed point as failure-free (i.e., no
failure occurs) execution.

3.1 Failure Recovery Methods
Upon any failure at time t f , the master node immediately
replaces failed nodes with standby ones and then notifies re-
placements to reload the lost vertices and edges. Afterwards,
one of our failure recovery methods (Sections 3.1.1 and
3.1.2) is invoked to recover vertex states on failed nodes and
then continue computations, until a fixed point is reached.

3.1.1 Failure Recovery without Rolling Back
(FR-WORB)

Assume no checkpoint is archived before failures. In this
scenario, a traditional way of tolerating failures is to roll
back every vertex state value v j to v0

j = 0 and hence ∆v0
j = c j.

It is referred to as FR-Scratch, since every v j is recomputed
from scratch. FR-Scratch is inefficient because workload on
surviving nodes before t f is discarded, and re-performing it
wastes computation and communication resources.

By contrast, we present a failure recovery method where
lost vertices on failed nodes only are recomputed from
scratch and updates over surviving vertices can keep going
without rolling back, referred to as FR-WORB.

Compared with FR-Scratch, FR-WORB avoids recom-
puting surviving vertex states, but a key issue is how to
guarantee the correctness, i.e., it can converge to the same
fixed point as reached in FR-Scratch, because surviving ver-
tex states are not rolled back to 0. We solve this problem by
designing a special restarting point and the basic idea behind
it is to utilize available data as much as possible. We denote
by ṽ j and ∆ṽ j the state value and delta value in FR-WORB,
respectively, to distinguish them from ones before failures.
In the restarting point, for ṽ0

j , it equals to v f
j if j resides on

surviving nodes, where v f
j is the state value of j at t f . Oth-

erwise, it is 0. Let VN stand for a set of vertices residing on

73

node N. Eq. (4) shows that mathematically, where NF and
NS represent the failed node set and surviving node set, re-
spectively. On the other hand, ∆ṽ0

j in the restarting point is
given by (ṽ1

j ⊖ ṽ0
j). Here, ⊖ is an abstract operation satisfy-

ing that g{i, j}(x) has the distributed property over ’⊖’, x⊖ x
= 0, and (x⊕y)⊖ z = x⊕ (y⊖ z). For PageRank, ⊖ is ’-’. ṽ1

j
used above is derived from its newly initialized in-neighbor
state ṽ0

i using the synchronous model (Eq. (1)). Eq. (5) gives
a mathematical description about constructing ∆ṽ0

j .

ṽ0
j =

0, j ∈

∪
N∈NF

VN

v f
j , j ∈

∪
N∈NS

VN
(4)

∆ṽ0
j = ṽ1

j ⊖ ṽ0
j =

(
c j⊕

(
∑

i∈Γin
j

⊕g{i, j}(ṽ
0
i)
))
⊖ ṽ0

j (5)

As analyzed above, ṽ1
j can be easily calculated by run-

ning a synchronous iteration. However, in context of asyn-
chronous computations, flushing operations are required to
guarantee that operations can be performed in right order.
That is, as a preprocessing phase before recovery, at t f , any
existing g{i, j}(∆vi) in network and ∆v j on surviving nodes
must be flushed. This is because g{i, j}(ṽ0

i) in Eq. (5) is differ-
ent from g{i, j}(∆vi) in Eq. (2) (normal asynchronous compu-
tation), and the two types of messages must be separated to
get correct ṽ1

j . Also, the current ∆v j on surviving nodes per-
haps stores the value based on g{i, j}(∆vi), that needs to be
cleared, i.e., being reset to 0, in order to accumulate newly
received messages g{i, j}(ṽ0

i).
Flushing g{i, j}(∆vi) needs a three-step operation. First,

computing threads are suspended to stop generating new
messages. Second, at each sender side, messages in send-
ing buffer are flushed and then an EOF notification is broad-
casted to any node subsequently. Third, each receiver side
blocks itself until it has received all EOF notifications from
sender sides or the waiting time exceeds a given threshold.
After flushing g{i, j}(∆vi), ∆v j is reset to 0 locally to clear its
value. In particular, when calculating ∆ṽ0

j , flushing g{i, j}(ṽ0
i)

is also required to guarantee that each vertex has received
all possible messages from in-neighbors. This can be done
using the same way with flushing g{i, j}(∆vi).

Now, FR-WORB can continue asynchronous computa-
tions as usual from the restarting point (ṽ0

j , ∆ṽ0
j). And we can

prove its correctness in Theorem 1 in Section 3.2. Intuitively,
FR-WORB is more efficient than FR-Scratch, since the for-
mer preserves completed workloads on surviving nodes and
further uses them to benefit recovering lost ones on failed
nodes, instead of abandoning them as the latter. Also, in FR-
WORB, when recovering lost vertex states, vertices on sur-
viving nodes can be refined continuously without pausing.

Last but not least, new failures, termed cascading fail-
ures, may occur when constructing ṽ0

j and ∆ṽ0
j . Let Fcur and

Fcas be the current failures and cascading failures. In this sce-
nario, current work, including partially constructed ∆ṽ0

j and
possibly broadcasted g{i, j}(ṽ0

i) for Fcur, becomes invalid be-
cause new data are lost caused by Fcas. FR-WORB thereby
abandons current work and then re-constructs ṽ0

j and ∆ṽ0
j to

recover Fcur and Fcas together. Note that it is unnecessary
to perform additional flushing operations to discard current
work, because it can be done in the preprocessing phase
before re-constructions for Fcur and Fcas.

3.1.2 Failure Recovery with Asynchronous
Checkpointing (FR-WAC)

Because no checkpoint is archived during failure-free execu-
tion, for FR-WORB, the only way of initializing lost vertex
states is to reset them to the initial value 0. The heavy recov-
ery workload impacts the performance, even though surviv-
ing vertex state values can be used.

Now we introduce a method to further boost the recovery
efficiency by archiving data during failure-free execution. It
is inspired by checkpointing. In general, the checkpointing
method archives data as checkpoint periodically. Upon fail-
ures, all nodes load the last available checkpoint and then
recover computations from that point, instead from scratch,
to reduce the recovery workload. However, existing tech-
niques need to block updating vertex state v j when archiving
it. This requires a synchronization barrier to coordinate the
progress of each node, which largely degrades the perfor-
mance of failure-free execution. Unlike them, our method
asynchronously archives data, termed FR-WAC. FR-WAC
avoids recovering lost data from scratch compared with FR-
WORB, while leading to nearly zero performance degrada-
tion of failure-free execution.

In FR-WAC, each node individually archives its local ver-
tex state values v j based on a user-specified interval τ . There
is no global synchronization barrier [15] or any other pro-
tocols [14] to coordinate the progress, which eliminates the
expensive synchronization overheads. Furthermore, on one
node, a separate thread is launched to accomplish the archiv-
ing operation, which runs in fully parallel with the message-
receiving (Eq. (2)) and vertex-updating (Eq. (3)) threads.
The asynchronous computation is thereby performed pro-
gressively without pausing.

Different from FR-WORB, FR-WAC initializes lost ver-
tex states using checkpoint data, i.e., ṽ0

j = vx
j, if j∈∪N∈NF VN .

Here, vx
j is kept in the most recent available checkpoint

archived at tx by node N. After that, we calculate ṽ1
j and

∆ṽ0
j using the same way (including flushing operations) as

FR-WORB. Since vx
j is closer to the fixed point than 0, FR-

WAC potentially outperforms FR-WORB.
For cascading failures, FR-WAC also abandons current

work and re-constructs the restarting point. But new lost
vertex states are reset to values in the checkpoint.

Usually, for existing work, τ is a key parameter to balance
the tradeoff between the recovery efficiency and archiving

74

runtime, and it is a non-trivial task to set a reasonable value
prior to computations. But in this paper, we will experimen-
tally show that a quite large range of τ can allow FR-WAC
to have prominent recovery efficiency and nearly zero per-
formance degradation of asynchronous computations.

3.2 Correctness
Now we prove the correctness of our methods in Theorem 1.

Theorem 1. FR-WORB and FR-WAC will converge to the
same fixed point as FR-Scratch.

Proof. We prove this theorem by analyzing the relationship
between the value of vertex j in the fixed point (ṽ∞

j) and the
new input (ṽ0

j and ∆ṽ0
j). This is because the difference be-

tween FR-Scratch and FR-WORB/FR-WAC can be reduced
to the restarting point after failures.

FR-WORB is first analyzed. As described in Eqs. (2) and
(3), delta-based messages are transferred from one vertex to
another along the edge between them, and used to update
vertex states. Thus, at time tk, the state of vertex j, ṽk

j, has
accumulated any received message value from j’s direct
and indirect neighbors. As the initial input, ṽ0

j and ∆ṽ0
j ,

of course are accumulated into ṽk
j. Mathematically, this is

shown in Eq. (6). Here, ∏l−1
ix ,ix+1∈p,

and x=0

g{ix,ix+1}(∆ṽ0
i0) indicates

the message value transferred from i0 to j along one path p
in the graph, and we replace it with ∏p(∆ṽ0

i0) for simplicity.

ṽk
j = ṽ0

j ⊕∆ṽ0
j

⊕
k

∑
l=1
⊕
(

∑
p∈P(j,l)

⊕
(l−1

∏
ix ,ix+1∈p,

and x=0

g{ix,ix+1}(∆ṽ0
i0)
))

(6)

Specifically, a path is defined as p = {i0, i1, ..., ix} con-
sisting of vertices that satisfy the following condition: there
exists 0 ≤ m0 < m1 < ... < mx ≤ k such that ih ∈ Smh . Sk
is a set of vertices performing the user-defined update logic
at time tk, and it is an element in an update sequence S =
{S0,S1,S2, ...,Sk} corresponding to a continuous time in-
stance sequence {t0, t1, t2, ..., tk}. In particular, vertices in S0
use input vertex and delta values to update themselves. The
physical meaning of p is that some value as a message is
sent from i0 and then forwarded along i1, i2, ... to ix. p is
available for ix when ix has received the message originat-
ing from i0. The number of p’s hops equals to (|p|-1). We
use P(j, l) to stand for a set of l-hop available paths to j.
Thus, for p ∈ P(j, l), ∏p(∆ṽ0

i0) is computed by recursively
applying the message generating function g{ix,ix+1}, i.e.,

∏
p
(∆ṽ0

i0) = g{il−1, j}

(
...g{i1,i2}

(
g{i0,i1}(∆ṽ0

i0)
))

Obviously, at the fixed point, to guarantee that all possible
values have been accumulated into ṽ j, a vertex i0 must per-
form Eqs. (2) and (3) an infinite number of times until its

∆ṽi0 is 0. We thereby derive ṽ∞
j by accumulating all possible

paths with hops from 0 to ∞, which is described in Eq (7).

ṽ∞
j = ṽ0

j ⊕∆ṽ0
j ⊕

∞

∑
l=1
⊕
(

∑
p∈P(j,l)

⊕
(
∏

p
(∆ṽ0

i0)
))

(7)

Based on Eq. (5), the expression of ∆ṽ0
i0 is

∆ṽ0
i0 = ṽ1

i0 ⊖ ṽ0
i0 =

(
∑

n∈Γin
i0

⊕g{n,i0}(ṽ
0
n)
)
⊖ ṽ0

i0 ⊕ ci0

Thus, compared with FR-Scratch (ṽ0
i0 = 0, ∆ṽ0

i0 = ci0), the
difference in input is caused by ṽ0

n/ṽ0
i0 . In the following, we

introduce how to eliminate this difference.
Without loss of generality, given an l-hop path p starting

from vi0 , by substituting the expression for ∆ṽ0
i0 , we can

easily expand ∏p(∆ṽ0
i0) as

∏
p
(∆ṽ0

i0) =

(
∑

n∈Γin
i0

⊕
(
∏

p

(
g{n,i0}(ṽ

0
n)
)))

⊕∏
p
(ci0)⊖∏

p
(ṽ0

i0).

∀n ∈ Γin
i0 , an (l+1)-hop path can be formed by adding the

in-neighbor n, i.e., p′={n}∪p. Like p, we have

∏
p′
(∆ṽ0

n) =

(
∑

m∈Γin
n

⊕
(
∏
p′

(
g{m,n}(ṽ

0
m)
)))

⊕∏
p′
(cn)⊖∏

p′
(ṽ0

n)

In particular, ∏p′(ṽ0
n) = ∏p

(
g{n,i0}(ṽ

0
n)
)
. Hence, by accu-

mulating ∏p(∆ṽ0
i0) and ∏p′(∆ṽ0

n) as described in Eq. (7), the
item ∏p

(
g{n,i0}(ṽ

0
n)
)

is eliminated. Furthermore, when val-
ues along all (l+1)-hop paths starting from i0’s in-neighbors
have been received, ∑n∈Γin

i0
⊕
(

∏p
(
g{n,i0}(ṽ

0
n)
))

is elimi-
nated. As a result, after accumulating values transferred
along all paths to j, including ṽ0

j and ∆ṽ0
j , we can infer that

ṽ∞
j =c j⊕

(
∞

∑
l=1
⊕
(

∑
p∈P(j,l)

⊕
(
∏

p
(ci0)

)))

⊕

(
∑

p∈P(j,∞)

⊕
(
∏

p

(
∑

n∈Γin
i0

⊕g{n,i0}(ṽ
0
n)
)))

Since g{i, j}(x) is always closer to 0 than x, ∏p∈P(j,∞)(x)→
0. Therefore, ṽ∞

j only depends on ci0 which is the same as
that in FR-Scratch, i0 ∈V .

Consider that the only difference between FR-WORB and
FR-WAC is the value of ṽ0

n for every vertex on failed nodes.
Since ṽ∞

j is independent of ṽ0
n, we can easily infer that FR-

WAC also converges to the same fixed point as FR-Scratch.
Then we have the claim.

75

3.3 Example Graph Algorithms
We finally illustrate a series of well-known graph algorithms,
the user-defined update functions of which can be converted
into the required operations g{i, j}(x), ⊕ and ⊖ (as shown in
Table 1). Since PageRank has been given as an example in
Section 2.1), we describe other algorithms as follows.

Penalized Hitting Probability (PHP) [10, 29]: PHP is used
to measure the proximity (similarity) between a given source
vertex s and any other vertex j. As a random walk based
algorithm, a walker at vertex i moves to i’s out-neighbor j
with probability proportional to an edge weight w(i, j). The
sum of transition probabilities indicates the proximity. In
particular, s as the query vertex has constant proximity value
1. Both PageRank and PHP use a decay factor d (0 < d < 1)
when computing messages. Without loss of generality, we
set d = 0.8 in this paper.

Table 1. Example Graph Algorithms
Algorithms c j g{i, j}(x) ⊕ ⊖ 0
PageRank (1-d) d · x

|Γout (j)| + − 0

PHP
1 (j=s)

or 0 (j ̸=s)

d·x ·w(i, j)
(j ̸=s)

or 0 (j=s)
+ − 0

Katz
1 (j=s)

or 0 (j ̸=s)
β · x + − 0

Adsorption pin j
j · I j pcont

j ·w(i, j) · x + − 0

Katz metric (Katz) [11]: Katz is another proximity measure
between two vertices in a graph. The score value is computed
as the sum over the collection of paths between a given
source vertex s and any other vertex j. Like d used in PHP,
β is a user-defined damping factor.

Adsorption [3]: Adsorption is a graph-based label propaga-
tion algorithm used in personalized recommendation. Every
vertex j iteratively refines a probability distribution on a la-
bel set which contains features of entities (e.g., the category
of music/video). c j is initialized by a user-defined distribu-
tion I j. Afterwards, j is updated by the weighted average of
label distributions from its in-neighbors. pin j

j and pcont
j are

two parameters associated with j and pin j
j + pcont

j = 1.

4. Faiter: A Distributed Framework with
FR-WORB and FR-WAC

Now we present Faiter, a distributed implementation of our
fault-tolerant methods, built on top of Maiter. Fig. 1 illus-
trates the major difference between Faiter and Maiter. Newly
added components in Faiter are RecoveryCoordinator on the
master node and RecoveryExecutor on every slave node. The
two components work together to recover failures. Faiter
also performs load balancing on recovery to further improve
the recovery efficiency.

Figure 1. Implementing Faiter on top of Maiter

4.1 Maiter Architecture
As shown in Fig. 1 (ignore RecoveryCoordinator and Re-
coveryExecutor for now), at the very beginning of computa-
tions, an input graph is divided into partitions, each of which
is kept on a slave node as data table so that they can be pro-
cessed in parallel. data table consists of a series of quadru-
ples, i.e., vertex id id, vertex state value val, delta-based
value delta and outgoing edges edges. After that, by individ-
ually accessing different columns in data table, Message-
Processor and UpdateProcessor can respectively perform
Eq. (2) and Eq. (3), to continuously consume received mes-
sages, update vertex values and send new messages. Nodes
communicate with each other through MPI.

Given an algorithm, TerminationCheck on the master
node monitors its computation progress in a passive way
where UpdateProcessor on every slave node periodically re-
ports the progress metric to TerminationCheck, and then the
latter accumulates reported information to obtain the global
progress. Generally, when the difference between two con-
secutive global progress values is less than a user-specified
threshold, TerminationCheck sets a flag stop signal as “true”
and then broadcasts it to all slave nodes to stop computations
in UpdateProcessor and dump final results.

4.2 Design of Faiter
Upon failures, the process of employing FR-WORB or FR-
WAC for recovery consists of three phases: loading lost
graph data where ṽ0

j is initialized, followed by flushing mes-
sages, and constructing ∆ṽ0

j . The three phases are performed
by new components RecoveryCoordinator on the master
node and RecoveryExecutor on every slave node. The details
are given in Algorithm 1 (RecoveryCoordinator) and Algo-
rithm 2 (RecoveryExecutor). Here, N is the set of nodes.

When encountering failures, the process in Algorithm 1 is
first triggered. Consider that ṽ j keeps stable when construct-
ing the restarting point in FR-WORB/FR-WAC and the dif-

76

ference between two consecutive progress metric values is
zero. TerminationCheck thereby makes a false positive judg-
ment and then terminates the algorithm. To solve this prob-
lem, TerminationCheck must be suspended (Line 1).

Algorithm 1: RecoveryCoordinator()
1 suspending TerminationCheck
2 sending recovery signal of “load” to RecoveryExecutor

on N ∈ N
3 while Number of ACKs of “load” ̸= |N| do
4 waiting for new ACK

5 sending recovery signal of “flush” to
RecoveryExecutor on N ∈ N

6 while Number of ACKs of “flush” ̸= |N| do
7 waiting for new ACK

8 sending signal recovery of “construct” to
RecoveryExecutor on N ∈ N

9 while Number of ACKs of “construct” ̸= |N| do
10 waiting for new ACK

11 waking TerminationCheck
12 sending signal recovery of “restart” to

RecoveryExecutor on N ∈ N
13 return;

Subsequently, RecoveryCoordinator notifies all Recov-
eryExecutors to load lost graph data if necessary by the
recovery signal of “load”, and then blocks itself to wait
for acknowledgements (i.e., ACK) from RecoveryExecutors
(Lines 2-4 in Algorithm 1). Once receiving the notifica-
tion, as shown in Algorithm 2, RecoveryExecutor first sus-
pends UpdateProcessor to avoid updating vertex state val-
ues (Line 2). For a new employed node, its data table is
empty and can be filled up by raw graph data (FR-WORB)
or checkpoint data (FR-WAC) (Lines 3-4). An acknowl-
edgement is sent to indicate that the loading work is done
(Line 5). Note that lost data on one node can be re-assigned
to multiple nodes to accelerate the recovery efficiency. We
discuss this problem in Section 4.3.

Once every acknowledgement of “load” has been re-
ceived, RecoveryCoordinator starts the flushing operation by
broadcasting the recovery signal of “flush”, to discard exist-
ing messages in the system (Lines 5-7 in Algorithm 1). Re-
coveryExecutor, as shown in Algorithm 2, performs flushing
by first flushing local messages (Line 8) and then broadcast-
ing an EOF flag to each other to clear messages flying on
network (Line 9). When all EOFs are available, that means
MessageProcessor on this node has received every possible
message and accumulated its value into ∆v j (Lines 10-11).
Thus, the next step is to reset ∆v j as 0, to discard accumu-
lated values (Lines 12-13). The acknowledgement of “flush”
tells RecoveryCoordinator that the corresponding node has
finished flushing operations (Line 14).

After flushing messages, RecoveryCoordinator broad-
casts another recovery signal of “construct” to construct
∆ṽ j (Lines 8-10 in Algorithm 1). In Algorithm 2, Recov-
eryExecutor accesses data table and then sends messages
g{ j,h}(ṽ j) (Lines 17-19). Like flushing operations, EOF is
exchanged to guarantee that all messages have been received
by targets (Lines 20-22). Afterwards, we can calculate ∆ṽ j
using Eq. 5 (Lines 23-24).

Algorithm 2: RecoveryExecutor()
Input : recovery signal received from

RecoveryCoordinator: recovery signal

1 if recovery signal is load then
2 suspending UpdateProcessor
3 if data table is empty then
4 loading graph data and initializing ṽ0

j

5 sending ACK of “load” to RecoveryCoordinator
6 return
7 else if recovery signal is flush then
8 flushing messages in sending buffer
9 sending EOF to RecoveryExecutor on N ∈ N

10 while Number of EOFs ̸= |N| do
11 waiting for new EOF

12 foreach j ∈VN do
13 ∆v j← 0
14 sending ACK of “flush” to RecoveryCoordinator
15 return;

16 else if recovery signal is construct then
17 foreach j ∈VN do
18 foreach h ∈ Γout(j) do
19 sending g{ j,h}(ṽ j), j ∈V to target

MessageProcessor

20 sending EOF to RecoveryExecutor on N ∈ N
21 while Number of EOFs ̸= |N| do
22 waiting for new EOF

23 foreach j ∈VN do
24 calculating ∆ṽ j using Eq. 5

25 sending ACK of “construct” to
RecoveryCoordinator

26 return;

27 else if recovery signal is restart then
28 waking UpdateProcessor

29 return;

Finally, TerminationCheck and UpdateProcessors are
waked (Lines 11-12 in Algirihtm 1 and Line 28 in Algo-
rithm 2), and then computations are restarted. In particular,
if cascading failures are encountered during the three phases,
the two algorithms will be re-executed.

77

4.3 Recovery with Load Balancing
In restarting computations after failures, every vertex value
is refined iteratively to the fixed point as failure-free execu-
tion. However, computing work on lost vertices must be per-
formed from scratch (FR-WORB) or the most recent avail-
able checkpoint (FR-WAC), instead from the point just be-
fore failures (like surviving vertices). In another word, com-
pared with surviving nodes, replacements of failed nodes
need to handle the lost computing work until failures, in-
dicating a heavy load imbalance problem.

We solve this problem by distributing lost computations
on m failed nodes onto n replacements, where n=m+x, and
x≥1. The basic idea behind it is to leverage the additional
x nodes to balance the load on replacements and then accel-
erate recovery. When recovery is done, data on these addi-
tional x nodes will be sent back to m replacements, in order
to release resources.

Intuitively, data can be re-assigned onto n replacements
using the simple “HASH” policy, i.e., v id mod n. However,
a key issue is how to avoid collisions, because the original
data assignment usually uses the same policy in most exist-
ing systems [1, 15, 31], i.e., v id mod |N|, where |N| is the
number of employed nodes before failures. For example, as-
sume that |N|=16, n = 2, and vertex ids on the failed node
node 0 are {0,16,32,48,...}. In re-assignment, the value of
v id mod 2 is always zero, that is, vertices on node 0 are
still re-assigned onto a single replacement and another one
is idle. This paper designs a new hash function as shown in
Eq. (8). By using (|N| · x) instead of n, we can evenly dis-
tribute data. Here, mapTable is a lookup table mapping idx
into a new unique node id node id.

node id = mapTable[idx], idx = j mod (|N| · x) (8)

The new hash function also facilitates the message ad-
dressing problem, i.e., routing a message to the correct target
node after data placement has been changed. Existing work
[12] maintains a distributed lookup table storing the own-
ership of every vertex. Searching a large table is obviously
time-consuming. Instead, our method computes the address
dynamically. That is, given a destination vertex id v id, its
target node id node id = v id mod |N|. If the node fails, v id
is hashed again using Eq. (8) to get a new node id. Appar-
ently, the only requirement in our method is to maintain a
mapTable with n entries, which is much smaller than the ta-
ble with |V | entries used in [12].

There are advanced partitioning techniques, but none of
them is suitable for our re-assignment scenario. For exam-
ple, multi-level partitioning [13] is not cost-effective as its
expensive runtime will be counted in our online processing
time. By contrast, streaming partitioning [21] requires to be
run on a single machine, that impacts the scalability.

5. Evaluation
In this section, we evaluate our fault-tolerant methods on
Faiter to show their effectiveness.

Solutions for comparison: We analyze the performance of
our FR-WORB and FR-WAC in comparison with the base-
line method FR-Scratch. Existing checkpoint-based meth-
ods are not involved in our study due to the heavy per-
formance degradation caused by expensive synchronization
barriers [9] or overheads of blocking computations [14].

Experimental cluster: We conduct testing on the Amazon
EC2 cluster which consists of 32 t2.micro instances/nodes
with one additional node as Master. Each node running
Ubuntu Server 14.04 is equipped with 1 virtual core, 1GB of
RAM, and 8GB SSD storage.

Workload and datasets: Limited by the manuscript length,
we perform evaluation on two representative graph algo-
rithms only, PageRank and PHP. Other algorithms listed in
Table 1 exhibit the similar performance.

All tests are done over real graphs as shown in Table 2.
The web graph Wiki1 has a large diameter, and LiveJ2 and
Wiki are sparser than Orkut3.

Table 2. Real Graph Datasets (M: million)
Graph Vertices Edges Degree Type
LiveJ 4.8M 68M 14.2 Social networks
Wiki 5.7M 130M 22.8 Web graphs
Orkut 3.1M 234M 75.5 Social networks

Evaluation metrics: Two metrics are evaluated in experi-
ments, Recovery time and Runtime.

Assume that failures occur at t f . Recovery time is defined
as the elapsed time from t f to the time tr where lost vertex
states have been recovered. In order to evaluate whether the
recovery is completed, we need to define a progress metric
(PM). Given input as shown in Table 1, each vertex state v j is
monotonously increased to a fixed point for both PageRank
and PHP in failure-free execution. We thereby define PM as
the sum of every v j, i.e., at time tk, PMk =∑ j∈V ⊕vk

j. Then, at
tr, for the partial progress metric PM

′
k = ∑ j∈VN ⊕vk

j, N ∈NF ,
we have PM

′
r = PM

′
f . NF is the set of failed nodes.

On the other hand, for both PageRank and PHP, Runtime
is the elapsed time from t f to the point where |PM∞−PMk| ≤
δ , where PM∞ is the sum of vertices at the fixed point and δ
is the user-specified difference threshold. Specifically, PM∞
is given by running failure-free algorithms offline. On the
other hand, surviving vertices are still updated progressively
during recovery, which continuously contributes to PM. If
δ is large, it’s possible that the termination is triggered but
many restarted vertices are still far from convergence. Based

1 http://haselgrove.id.au/wikipedia.htm
2 http://snap.stanford.edu/data/soc-LiveJournal1.html
3 http://socialnetworks.mpi-sws.org/data-imc2007.html

78

on our experience, δ = 10−3 is small enough to solve this
problem for graphs used in this paper.

Experiment design: Consider that no explicit barrier exists
in asynchronous systems. To test the effectiveness of our
methods when failures occur at different phases in computa-
tions, we thereby state three scenarios, T1, T2, and T3. That
is, failures occur at times T1, T2, and T3, respectively. Specif-
ically, we run an algorithm without failures beforehand to
record the total runtime t and then set the specific values of
T1, T2, T3 as 0.1t, 0.5t, and 0.9t, respectively. Besides, the
priority queue size is set to q = 0.2|V | to achieve prominent
performance of failure-free execution based on priori tests.

5.1 Recovery Time
Suppose that 16 slave nodes are used and only a single one
fails. Unless otherwise specified, we replace failed nodes
with the same number of standby nodes. This suite of exper-
iments shows the recovery time of FR-Scratch, FR-WORB
and FR-WAC, by running PageRank and PHP over all
datasets. In particular, τ in FR-WAC is set to 8 seconds for
PageRank on Orkut, and for others, it equals to 4 seconds.
A detailed discussion about τ is given in Section 5.6.

All tests are done in three scenarios: T1 where the three
methods exhibit similar performance, and T2 and T3 where
our FR-WORB and FR-WAC are supposed to be better.
Specifically, as plotted in Fig. 2-Fig. 4, the speedup of FR-
WORB compared with FR-Scratch is 3.03x (PageRank over
LiveJ, T3) at most. For FR-WAC, it is even up to 9.88x
(PageRank over LiveJ, T3).

In T1, compared with FR-Scratch, the recovery perfor-
mance using FR-WORB and FR-WAC is not improved sig-
nificantly, and even slightly worse in some cases. That can
be explained from two perspectives. First, in the early phase
of computations, accumulated workloads on surviving nodes
are not so many that the cost of recomputing them from
scratch (FR-Scratch) can be negligible. Second, there exist
some synchronization barriers in FR-WORB and FR-WAC
to execute flushing operations, which incurs overheads.

By contrast, in T2 and T3, FR-Scratch takes much time
to recompute workloads on surviving nodes. However, FR-
WORB and FR-WAC avoid this problem and can lever-
age them to accelerate the recovery speed of lost data. FR-
WORB and FR-WAC thereby have superior performance to
FR-Scratch. FR-WAC usually outperforms FR-WORB, es-
pecially for T3. This is because at the end of computations,
recomputing lost data from scratch (FR-WORB) is still time-
consuming, even though we can utilize preserved workloads.
FR-WAC solves this problem by providing the most recent
available checkpoint data.

An interesting observation we can make in Fig. 3(b) is
that FR-WORB and FR-WAC perform similarly. PHP tra-
verses a graph starting from a given source vertex, and hence
for the large diameter graph Wiki, there exists a long conver-
gent stage where only a few vertices are updated and others

are convergent. Thus, when some data are lost, convergent
vertices on surviving nodes can greatly accelerate the recov-
ery, which largely narrows the performance gap between FR-
WORB and FR-WAC.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

T1 T2 T3

re
c
o

v
e

ry
 t
im

e
 (

s
e

c
)

failure occurrence time

FR-Scratch
FR-WORB
FR-WAC

(a) PageRank

 0

 10

 20

 30

 40

 50

 60

 70

T1 T2 T3

re
c
o

v
e

ry
 t
im

e
 (

s
e

c
)

failure occurrence time

FR-Scratch
FR-WORB
FR-WAC

(b) PHP

Figure 2. Recovery time on LiveJ

 0

 20

 40

 60

 80

 100

T1 T2 T3

re
c
o
v
e
ry

 t
im

e
 (

s
e
c
)

failure occurrence time

FR-Scratch
FR-WORB
FR-WAC

(a) PageRank

 0

 5

 10

 15

 20

 25

 30

T1 T2 T3

re
c
o
v
e
ry

 t
im

e
 (

s
e
c
)

failure occurrence time

FR-Scratch
FR-WORB
FR-WAC

(b) PHP

Figure 3. Recovery time on Wiki

 0

 50

 100

 150

 200

 250

T1 T2 T3

re
c
o
v
e
ry

 t
im

e
 (

s
e

c
)

failure occurrence time

FR-Scratch
FR-WORB
FR-WAC

(a) PageRank

 0

 20

 40

 60

 80

 100

 120

 140

T1 T2 T3

re
c
o
v
e
ry

 t
im

e
 (

s
e

c
)

failure occurrence time

FR-Scratch
FR-WORB
FR-WAC

(b) PHP

Figure 4. Recovery time on Orkut

5.2 Runtime
We test runtime using the same setting in Fig. 2-Fig. 4.
As shown in Fig. 5-Fig. 7, FR-WORB is 2.43 times faster
than FR-Scratch at most (PageRank over LiveJ, T3). FR-
WAC can offer up to 5.57x speedup in comparison with
FR-Scratch (PageRank over Wiki, T3). Note that the gain
is not so large as that in recovery time, because the time
of running remaining computations after recovering failures
may occupy a large proportion of the overall performance,
especially for T1 and T2.

Different from recovery time, runtime of FR-WORB and
FR-WAC is inversely proportional to the failure occurrence
time, because they can avoid rolling back completed com-
putations. However, for FR-Scratch, it is a constant since
FR-Scratch always recomputes from scratch.

Another observation we can make is that when failures
occur in T1 and T2, compared with FR-WORB, checkpoint-
ing in FR-WAC brings marginal benefit, and even slightly
performance degradation in some cases. The reason is that
runtime counts the cost of archiving data. Thus, benefits
about reducing recovery time is partially offset, especially

79

for T1 (more checkpoint data are archived in restarting com-
putations). From the runtime perspective, FR-WORB is a
preferred solution when failures occur during the early com-
putations, while FR-WAC is more suitable for the scenario
where the process is interrupted at the end of computations.

 0

 20

 40

 60

 80

 100

 120

T1 T2 T3

ru
n

ti
m

e
 (

s
e

c
)

failure occurrence time

FR-Scratch
FR-WORB
FR-WAC

(a) PageRank

 0

 20

 40

 60

 80

 100

T1 T2 T3

ru
n

ti
m

e
 (

s
e

c
)

failure occurrence time

FR-Scratch
FR-WORB
FR-WAC

(b) PHP

Figure 5. Runtime on LiveJ

 0

 20

 40

 60

 80

 100

 120

 140

T1 T2 T3

ru
n
ti
m

e
 (

s
e
c
)

failure occurrence time

FR-Scratch
FR-WORB
FR-WAC

(a) PageRank

 0

 10

 20

 30

 40

 50

T1 T2 T3

ru
n
ti
m

e
 (

s
e
c
)

failure occurrence time

FR-Scratch
FR-WORB
FR-WAC

(b) PHP

Figure 6. Runtime on Wiki

 0

 50

 100

 150

 200

 250

 300

 350

T1 T2 T3

ru
n

ti
m

e
 (

s
e

c
)

failure occurrence time

FR-Scratch
FR-WORB
FR-WAC

(a) PageRank

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

T1 T2 T3

ru
n

ti
m

e
 (

s
e

c
)

failure occurrence time

FR-Scratch
FR-WORB
FR-WAC

(b) PHP

Figure 7. Runtime on Orkut

5.3 Runtime with Cascading Failures
Figs. 8-10 report runtime of FR-Scratch, FR-WORB and
FR-WAC when encountering cascading failures. All tests are
run in T3 and the other setting is the same as that used in
Fig. 2-Fig. 4. Here, F1 indicates a single failed node, and
(F1 +F2) means that another node fails (cascading failure)
at time t

′
f , when constructing the restarting point for F1.

Since there is no construction in FR-Scratch, we simulate
cascading failures by setting another node failed at t

′
f .

Although FR-WORB and FR-WAC exhibit the similar re-
constructing operations, in some cases, as shown in Fig. 10,
FR-WORB performs slightly worse than FR-WAC, from the
performance degradation perspective. This is because more
failed nodes means more data are lost, which increases the
recomputing workload for FR-WORB. But for FR-WAC, the
increase is not so much due to checkpoint data. Nevertheless,
both of them still outperform FR-Scratch.

 0

 20

 40

 60

 80

 100

 120

Scratch WORB WAC

ru
n

ti
m

e
 (

s
e

c
)

fault-tolerant methods

F1
F1+F2

(a) PageRank

 0

 20

 40

 60

 80

 100

Scratch WORB WAC

ru
n

ti
m

e
 (

s
e

c
)

fault-tolerant methods

F1
F1+F2

(b) PHP

Figure 8. Runtime on LiveJ

 0

 20

 40

 60

 80

 100

 120

Scratch WORB WAC

ru
n

ti
m

e
 (

s
e

c
)

fault-tolerant methods

F1
F1+F2

(a) PageRank

 0

 10

 20

 30

 40

 50

 60

Scratch WORB WAC

ru
n

ti
m

e
 (

s
e

c
)

fault-tolerant methods

F1
F1+F2

(b) PHP

Figure 9. Runtime on Wiki

 0

 50

 100

 150

 200

 250

 300

 350

Scratch WORB WAC

ru
n

ti
m

e
 (

s
e

c
)

fault-tolerant methods

F1
F1+F2

(a) PageRank

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

Scratch WORB WAC

ru
n

ti
m

e
 (

s
e

c
)

fault-tolerant methods

F1
F1+F2

(b) PHP

Figure 10. Runtime on Orkut

5.4 Impact of Number of Failed Nodes
We explore the features of FR-Scratch, FR-WORB, and FR-
WAC, when varying the number of failed nodes. Using the
same setting in Fig. 2-Fig. 4, Figs. 11-13 report the runtime
for PageRank and PHP in T3.

Not surprisingly, the performance of FR-Scratch keeps
stable since it always forgets about completed workloads
on all nodes. Benefitting from the checkpoint data, a simi-
lar trend can also be observed for FR-WAC, but the perfor-
mance is prominent when compared to FR-Scratch, because
computations on surviving nodes are preserved.

On the contrary, the performance of FR-WORB gradually
degrades with the increase of failed nodes, as more lost data
are required to be recomputed from scratch and the benefits
brought by surviving vertex states become less significant.
Nevertheless, even when 50% of nodes fail, FR-WORB is
still up to 1.29 times faster than FR-Scratch.

5.5 Recovery with Load Balancing
This group of experiments validates that balancing the load
of recovery (Section 4.3) can significantly drop the recovery
time. PageRank over Wiki and PHP over LiveJ as two cases
are tested. The similar trends can be observed in other cases
but we omit them due to the limited manuscript space.

80

 0

 20

 40

 60

 80

 100

 120

 140

2 4 8 16

ru
n

ti
m

e
 (

s
e

c
)

of failed nodes

FR-Scratch
FR-WORB
FR-WAC

(a) PageRank

 0

 20

 40

 60

 80

 100

 120

2 4 8 16

ru
n

ti
m

e
 (

s
e

c
)

of failed nodes

FR-Scratch
FR-WORB
FR-WAC

(b) PHP

Figure 11. Runtime on LiveJ

 0

 20

 40

 60

 80

 100

 120

 140

 160

2 4 8 16

ru
n
ti
m

e
 (

s
e
c
)

of failed nodes

FR-Scratch
FR-WORB
FR-WAC

(a) PageRank

 0

 10

 20

 30

 40

2 4 8 16

ru
n
ti
m

e
 (

s
e
c
)

of failed nodes

FR-Scratch
FR-WORB
FR-WAC

(b) PHP

Figure 12. Runtime on Wiki

 0

 50

 100

 150

 200

 250

 300

 350

 400

2 4 8 16

ru
n
ti
m

e
 (

s
e
c
)

of failed nodes

FR-Scratch
FR-WORB
FR-WAC

(a) PageRank

 0

 40

 80

 120

 160

 200

2 4 8 16

ru
n
ti
m

e
 (

s
e
c
)

of failed nodes

FR-Scratch
FR-WORB
FR-WAC

(b) PHP

Figure 13. Runtime on Orkut

Specifically, in order to show how FR-WORB and FR-
WAC scale, we run the two cases using 10 nodes but when
one node fails in T3, the number of replacements varies from
1 to 7. Fig. 14 plots the recovery time. FR-WORB has a sig-
nificant improvement. The recovery time is reduced by up
to 39.5% and 57.3% in the two cases. This is because re-
computing from scratch is extremely time-consuming and
then leads to a heavy load imbalance. By contrast, increas-
ing the number of replacements brings marginal benefit for
FR-WAC, as checkpoint data reduce recomputing workload,
which has already alleviated the load imbalance problem.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6 7

re
c
o
v
e
ry

 t
im

e
 (

s
e
c
)

of replacements for the failed node

FR-WORB
FR-WAC

(a) PageRank over Wiki

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7

re
c
o
v
e
ry

 t
im

e
 (

s
e
c
)

of replacements for the failed node

FR-WORB
FR-WAC

(b) PHP over LiveJ
Figure 14. Recovery with load balancing

5.6 Determining τ for FR-WAC

FR-WAC usually exhibits prominent performance but re-
quires to archive data periodically. Now we compare the

runtime of failure-free execution when archiving data with
different τ values. τ = +in f means that no checkpoint is
archived. A reasonable τ used above is also determined here.

As shown in Fig. 15, different from existing synchronous
checkpointing techniques, a quite large range of τ can guar-
antee that the runtime overhead of archiving data is nearly
zero because of the efficient asynchronous mechanism. On
the other hand, a smaller τ means a more recent check-
point is available, which can reduce the recomputing work-
load. Thus, in experiments above, we set τ= 8 seconds for
PageRank over Orkut and τ= 4 seconds for other cases.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

2 4 8 16 +inf

ru
n

ti
m

e
 (

s
e

c
)

values of checkpointing interval

LiveJ
Wiki
Orkut

(a) PageRank

 0

 50

 100

 150

 200

2 4 8 16 +inf

ru
n

ti
m

e
 (

s
e

c
)

values of checkpointing interval

LiveJ
Wiki
Orkut

(b) PHP

Figure 15. Impact of archiving data

5.7 Empirical Validation of Correctness
Section 3.2 analyzes the correctness of FR-WORB and FR-
WAC. Now we empirically validate it by continuously mon-
itoring the progress metric PMk at sampled time instances.
Without loss of generality, in Fig. 16, we report the results
of PageRank and PHP over LiveJ, using the same setting in
Fig. 5. More specifically, we assume that t f = 87/57 (sec-
ond) for PageRank/PHP.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 0 20 40 60 80 100 120 140 160 180

P
M

time instances (seconds)

failure occurs
FR-Scratch
FR-WORB
FR-WAC

(a) PageRank

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140

P
M

time instances (seconds)

failure occurs
FR-Scratch
FR-WORB
FR-WAC

(b) PHP

Figure 16. Correctness of FR-WORB and FR-WAC

Let error(x) = |PM(x)−PM(FR−Scratch)|
PM(FR−Scratch) . When algorithms

converge, error(FR−WORB)/error(FR−WAC) is less than
0.012% which can be negligible. Thus, FR-WORB/FR-WAC
converges to the same fixed point as achieved in FR-Scratch.

6. Related Work
Many representative techniques have been developed to
provide fault-tolerance in graph processing systems. All
of them basically fall into three categories, checkpoint-
based, lineage-based, and reactive paradigms. We summa-
rize them and distinguish our work from them as follows.
Fault-tolerant techniques in high performance computing
(HPC) area are also discussed briefly.

81

Checkpoint-based solutions: Checkpointing as an early
technique proposed in [15] has been extensively used in
Pregel-like systems [1, 15, 18], due to its simplicity. It
works well in synchronous systems, but results in subop-
timal performance in asynchronous scenarios, as archiving
checkpoint data needs expensive global barriers among dif-
ferent computational nodes, which largely offsets the benefit
brought by asynchronous computations.

In particular, a non-blocking approach used in [24] makes
checkpoint written along with the generation/computation of
vertex values. Although barriers are still required, it partially
overlaps CPU processing and I/O processing when archiving
data, in order to avoid suspending computations as much as
possible. However, the benefit is limited in many cases as
reported by authors because the data generating/consuming
rate is usually greater than the checkpoint writing rate, i.e.,
the computing thread must wait for writing data.

GraphLab [14] introduces a variant of the Chandy-Lamport
method [6] to archive data without global barriers for its
asynchronous engine. That significantly reduces the check-
pointing overhead, but workloads on surviving nodes still
need to be rolled back to the most recent checkpoint. In-
stead, our methods preserve these completed workloads to
avoid the expensive recomputation overhead.

Besides, it greatly drops the overhead by reducing the
serialized data to vertex values [25], that is also used in our
methods. Some other researchers focus on improving the ef-
ficiency by confining re-computations only to lost data on
failed nodes and performing these re-computations in paral-
lel [20, 24]. However, vertex updates on surviving nodes are
still paused to wait for the failure recovery. Differently, in
our methods, surviving vertices can keep performing up-
dates. Also, we design new data re-assignment function
which is simple yet efficient due to the small lookup table.

Lineage-based solutions: Spark [2] employs a lineage
method to track the dependency of its coarse-grained data
structure [28]. The lost data can be recomputed by analyz-
ing lineage. Unlike checkpointing, lineage can save storage
space and network bandwidth since the volume of depen-
dency information is much smaller than that of algorithm-
specified data. However, directly injecting lineage into asyn-
chronous engines cannot work well as expected. This is be-
cause fine-grained updates makes the dependency relation-
ship prohibitively complicated, incurring expensive over-
heads in terms of space and runtime.

Reactive solutions: Recently, reactive recovery solutions
without checkpointing have attracted a lot of attention.

Some techniques focus on utilizing redundant data. Specif-
ically, Z. Chen tries to recover lost vector data for sparse
matrix-vector multiplication by utilizing inherent redundant
backup on other computational nodes [7]. M. Pundir et al.
design Zorro [17] where lost vertices can be recovered by
exploiting data replications naturally provided by today’s
systems, such as PowerGraph [8]. J. Wang et al. implement

the asynchronous computation model in a Datalog system
for general purpose applications and employ an existing
technique, i.e., keeping outgoing messages in memory at the
producer side until computations terminate, to re-send them
without re-generation upon failures [22]. However, redun-
dant information and replicated data may quickly exhaust
memory resources as reported in [32]. Thus, they are not
always feasible to scale to massive data sets. Besides, Zorro
is an approximate solution, i.e., incurring a slight loss of
accuracy when all replicated values are lost.

S. Schelter et al. [19] tolerate failures in a synchronous
system by designing a restarting point, resembling our so-
lutions. However, their technique requires users to carefully
design an algorithm-specified compensation function, which
is usually a nontrivial task [24]. On the contrary, our so-
lutions replace vertex values automatically, which largely
eases the burden of users. Also, our asynchronous check-
pointing mechanism can further boost the efficiency.

Fault-tolerance in HPC: High-performance computing sys-
tems typically decompose an application into multiple tasks
and then run these tasks in parallel for efficiency. Recently
proposed techniques [5, 16] utilize the task dependency
graph to recover a failed task by re-executing its predeces-
sors. However, tracking this dependency graph is particu-
larly prohibitive in asynchronous graph processing systems.
This is because every vertex as an independent computing
unit performs computations, which is complicated.

7. Conclusion
This paper proposes two novel fault-tolerant methods FR-
WORB and FR-WAC for a typical asynchronous system
Maiter. Unlike the most widely used checkpointing tech-
niques, our methods remove expensive synchronous barriers
and hence are naturally suitable for asynchronous computa-
tions. Both FR-WORB and FR-WAC perform computations
on surviving data progressively without rolling back, and can
leverage surviving data to accelerate recovering lost data.
FR-WAC as an improved solution can provide the most re-
cent checkpoint data through archiving data asynchronously,
to reduce recovery workloads. An optimization technique
about load balancing is also designed to boost the recov-
ery efficiency, especially for FR-WORB. Evaluation studies
on real-world graphs validate the effectiveness of our fault-
tolerant solutions and load balancing technique.

Acknowledgments
This work was partially supported by the U.S. NSF grant
CNS-1217284, and the National Natural Science Founda-
tion of China (61433008, 61472071, and 61528203). Zhi-
gang Wang was a visiting student at UMass Amherst, sup-
ported by China Scholarship Council, when this work was
performed. Authors also would like to thank anonymous re-
viewers for their constructive comments.

82

References
[1] Giraph. http://giraph.apache.org/.

[2] Apache spark. http://spark.apache.org/.

[3] S. Baluja, R. Seth, D. Sivakumar, Y. Jing, J. Yagnik, S. Kumar,
D. Ravichandran, and M. Aly. Video suggestion and discovery
for youtube: taking random walks through the view graph. In
Proc. of the 17th international conference on World Wide Web,
pages 895–904. ACM, 2008.

[4] S. Brin and L. Page. The anatomy of a large-scale hypertextual
web search engine. In Proc. 7th Intl. Conf. on the World Wide
Web, pages 107–117. Elsevier, 1998.

[5] C. Cao, T. Herault, G. Bosilca, and J. Dongarra. Design for
a soft error resilient dynamic task-based runtime. In Parallel
and Distributed Processing Symposium (IPDPS), 2015 IEEE
International, pages 765–774. IEEE, 2015.

[6] K. M. Chandy and L. Lamport. Distributed snapshots: deter-
mining global states of distributed systems. ACM Transac-
tions on Computer Systems (TOCS), 3(1):63–75, 1985.

[7] Z. Chen. Algorithm-based recovery for iterative methods
without checkpointing. In Proc. of HPDC, pages 73–84.
ACM, 2011.

[8] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.
Powergraph: Distributed graph-parallel computation on natu-
ral graphs. In Proc. of OSDI, volume 12, page 2, 2012.

[9] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J.
Franklin, and I. Stoica. Graphx: Graph processing in a dis-
tributed dataflow framework. In Proc. of OSDI, pages 599–
613, 2014.

[10] Z. Guan, J. Wu, Q. Zhang, A. Singh, and X. Yan. Assessing
and ranking structural correlations in graphs. In Proc. of
SIGMOD, pages 937–948. ACM, 2011.

[11] L. Katz. A new status index derived from sociometric analy-
sis. Psychometrika, 18(1):39–43, 1953.

[12] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams,
and P. Kalnis. Mizan: a system for dynamic load balancing
in large-scale graph processing. In Proc. of Eurosys, pages
169–182. ACM, 2013.

[13] D. LaSalle and G. Karypis. Multi-threaded graph partitioning.
In Proc. of IPDPS, pages 225–236. IEEE, 2013.

[14] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola,
and J. M. Hellerstein. Distributed graphlab: a framework for
machine learning and data mining in the cloud. Proc. of the
VLDB Endowment, 5(8):716–727, 2012.

[15] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-
scale graph processing. In Proc. of SIGMOD, pages 135–146.
ACM, 2010.

[16] T. Martsinkevich, O. Subasi, O. Unsal, F. Cappello, and
J. Labarta. Fault-tolerant protocol for hybrid task-parallel
message-passing applications. In Cluster Computing (CLUS-
TER), 2015 IEEE International Conference on, pages 563–
570. IEEE, 2015.

[17] M. Pundir, L. M. Leslie, I. Gupta, and R. H. Campbell. Zorro:
Zero-cost reactive failure recovery in distributed graph pro-
cessing. In Proc. of SoCC, pages 195–208. ACM, 2015.

[18] S. Salihoglu and J. Widom. Gps: A graph processing system.
In Proc. of SSDBM, page 22. ACM, 2013.

[19] S. Schelter, S. Ewen, K. Tzoumas, and V. Markl. All roads
lead to rome: optimistic recovery for distributed iterative data
processing. In Proceedings of the 22nd ACM international
conference on Conference on information & knowledge man-
agement, pages 1919–1928. ACM, 2013.

[20] Y. Shen, G. Chen, H. Jagadish, W. Lu, B. C. Ooi, and B. M.
Tudor. Fast failure recovery in distributed graph processing
systems. Proc. of the VLDB Endowment, 8(4):437–448, 2014.

[21] I. Stanton and G. Kliot. Streaming graph partitioning for large
distributed graphs. In Proc. of SIGKDD, pages 1222–1230.
ACM, 2012.

[22] J. Wang, M. Balazinska, and D. Halperin. Asynchronous and
fault-tolerant recursive datalog evaluation in shared-nothing
engines. Proc. of the VLDB Endowment, 8(12):1542–1553,
2015.

[23] Z. Wang, Y. Gu, Y. Bao, G. Yu, and J. X. Yu. Hybrid
pulling/pushing for i/o-efficient distributed and iterative graph
computing. In Proc. of SIGMOD, pages 479–494. ACM,
2016.

[24] C. Xu, M. Holzemer, M. Kaul, and V. Markl. Efficient
fault-tolerance for iterative graph processing on distributed
dataflow systems. In Proc. of ICDE, pages 613–624. IEEE,
2016.

[25] J. Xue, Z. Yang, Z. Qu, S. Hou, and Y. Dai. Seraph: an
efficient, low-cost system for concurrent graph processing. In
Proc. of HPDC, pages 227–238. ACM, 2014.

[26] J. Yin and L. Gao. Scalable distributed belief propagation
with prioritized block updates. In Proc. of CIKM, pages 1209–
1218, 2014.

[27] J. Yin and L. Gao. Asynchronous distributed incremental
computation on evolving graphs. In ECML/PKDD’16, 2016.

[28] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauley, M. J. Franklin, S. Shenker, and I. Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. In Proc. of NSDI, pages 2–2. USENIX
Association, 2012.

[29] C. Zhang, L. Shou, K. Chen, G. Chen, and Y. Bei. Evaluating
geo-social influence in location-based social networks. In
Proc. of CIKM, pages 1442–1451. ACM, 2012.

[30] Y. Zhang, Q. Gao, L. Gao, and C. Wang. Priter: A distributed
framework for prioritizing iterative computations. Parallel
and Distributed Systems, IEEE Transactions on, 24(9):1884–
1893, 2013.

[31] Y. Zhang, Q. Gao, L. Gao, and C. Wang. Maiter: an asyn-
chronous graph processing framework for delta-based ac-
cumulative iterative computation. TPDS, 25(8):2091–2100,
2014.

[32] C. Zhou, J. Gao, B. Sun, and J. X. Yu. Mocgraph: Scalable
distributed graph processing using message online computing.
Proc. of the VLDB Endowment, 8(4):377–388, 2014.

83

