
Accelerating Expectation-Maximization Algorithms with Frequent Updates

Jiangtao Yin∗, Yanfeng Zhang†∗, Lixin Gao∗

∗University of Massachusetts Amherst, USA
†Northeastern University, China

{jyin, yanfengzhang, lgao}@ecs.umass.edu

Abstract—Expectation Maximization is a popular approach
for parameter estimation in many applications such as image
understanding, document classification, or genome data analy-
sis. Despite the popularity of EM algorithms, it is challenging
to efficiently implement these algorithms in a distributed envi-
ronment. In particular, many EM algorithms that frequently
update the parameters have been shown to be much more
efficient than their concurrent counterparts. Accordingly, we
propose two approaches to parallelize such EM algorithms
in a distributed environment so as to scale to massive data
sets. We prove that both approaches maintain the convergence
properties of the EM algorithms. Based on the approaches,
we design and implement a distributed framework, FreEM, to
support the implementation of frequent updates for the EM
algorithms. We show its efficiency through three well-known
EM applications: k-means clustering, fuzzy c-means clustering
and parameter estimation for the Gaussian Mixture model. We
evaluate our framework on both a local cluster of machines
and the Amazon EC2 cloud. Our evaluation shows that the EM
algorithms with frequent updates implemented on FreEM can
run much faster than those implementations with traditional
concurrent updates.

I. INTRODUCTION

Discovering knowledge from a large collection of data

sets is one of the most fundamental problems in many

applications such as image understanding, document classifi-

cation, or genome data analysis. Expectation-Maximization

(EM) [6] is one of the most popular approaches in these

applications. It estimates parameters for hidden variables by

maximizing the likelihood. EM is an iterative approach that

alternates between performing an Expectation step (E-step),

which computes the distribution for the hidden variables

using the current estimates for the parameters, and a Maxi-

mization step (M-step), which re-estimates parameters to be

those maximizing the likelihood found in the E-step.

Due to its popularity, many methods for accelerating EM

algorithms have been proposed. Some of them [11], [12]

show that a partial E-step may accelerate convergence. Such

a partial E-step selects only a subset of data points for

computing the distribution. The advantage of the partial

E-step is that it allows the M-step to be performed more

frequently, so that the algorithm can leverage more up-

to-date parameters to process data points and potentially

accelerates convergence. Intuitively, updating the parameters

frequently might incur additional overhead. However, the

parameters typically depend on statistics of data sets that can

be computed incrementally. That is, the cost of computing

statistics grows linearly with the number of data points

whose statistics have been changed in the E-step. As a result,

performing frequent updates on the parameters does not

necessarily introduce additional cost. We refer to the EM

algorithm that updates the parameters frequently as the EM

algorithm with frequent updates. In contrast, the traditional

EM algorithm, which computes the distribution for all data

points and then updates the parameters, is referred to as the

EM algorithm with concurrent updates.

Despite the fact that the EM algorithm with frequent up-

dates has the potential to speedup convergence, parallelizing

it can be challenging. Although computing the distribution

and updating statistics can be performed concurrently, pa-

rameters such as centroids of clusters are global parameters.

Updating these global parameters has to be performed in a

centralized location and all workers have to be synchronized.

Synchronization in a distributed environment may incur

considerable overhead. Therefore, we have to control the

frequency of parameter update to obtain a good performance.

In this paper, we propose two approaches to parallelize the

EM algorithm with frequent updates in a distributed environ-

ment: partial concurrent and subrange concurrent. In the par-

tial concurrent approach, each E-step processes only a block

of data points. The size of a block controls the frequency of

parameter update. In the subrange concurrent approach, each

E-step computes the distribution in a subrange of hidden

variables instead of the whole range. The subrange size can

determine the frequency of parameter update. We prove that

both approaches maintain the convergence properties of the

EM algorithms. We control the parameter update frequency

by setting the block/subrange size, and provide strategies to

determine the optimal values. Additionally, both approaches

can scale to any number of workers/processors.

We design and implement a distributed framework,

FreEM, for implementing the EM algorithm with frequent

updates based on the two proposed approaches. FreEM eases

the process of programming EM algorithms in a distributed

environment. Programmers only need to specify the E-step

and the M-step. The detailed mechanisms, such as data

distribution, communication among workers, and frequency

of M-step, are all handled automatically. As a result, it

facilitates the process of implementing EM algorithms and

accelerates the algorithms through frequent updates. We

2012 IEEE International Conference on Cluster Computing

978-0-7695-4807-4/12 $26.00 © 2012 IEEE

DOI 10.1109/CLUSTER.2012.81

275

evaluate FreEM in the context of three well-known EM ap-

plications, k-means clustering, fuzzy c-means clustering and

parameter estimation for the Gaussian Mixture model. Our

results show that the EM algorithm with frequent updates

can run much faster than that with traditional concurrent

updates. In addition, FreEM is more efficient than Hadoop

[2], an open source implementation of MapReduce [5], in

supporting the EM algorithms.

The rest of this paper is organized as follows. Section II

describes the EM algorithm with frequent updates. Section

III shows the advantages of frequent updates through three

EM applications. Section IV presents our approaches to

parallelize the EM algorithm with frequent updates. In

Section V, we present the design, implementation and API

of FreEM. Section VI is devoted to the evaluation results.

Finally, we discuss related work in Section VII and conclude

the paper in Section VIII.

II. EM ALGORITHMS

In a statistical model, suppose that we have observed

the value of one random variable, X , which results from

a parameterized family, P (X|θ). The value of another

variable, Z, is hidden. Based on the observed data, we

wish to find θ such that P (X|θ) is the maximum. In order

to estimate θ, it is typical to introduce the log likelihood

function: L(θ) = logP (X|θ). Suppose the data consists

of n independent data points {x1, ..., xn}, and thereby the

hidden variable can be decomposed as {Z1, Z2, ..., Zn}.
Then, L(θ) =

∑n

i=1 logP (xi|θ). We assume that Z has

a finite range for simplicity, but the result can be gen-

eralized. Thus, the probability P (xi|θ) can be written in

terms of possible value (zi) of the hidden variable Zi as:

P (xi|θ) =
∑

zi
P (xi, zi|θ). When it is hard to maximize

L(θ) directly, the EM algorithm is used to maximize L(θ)
iteratively.

The EM algorithm leverages an iterative process to max-

imize L(θ). Each iteration consists of an E-step and a

M-step. The E-step estimates the distribution of hidden

variables, given the data points and the current estimates

of the parameters. The M-step updates the parameters to be

those maximizing the likelihood found in the E-step.

A. The EM Algorithm with Concurrent Updates

The EM algorithm with concurrent updates computes the

distribution for all data points in its E-step. Formally, let Qi

be some distribution over zi (
∑

zi
Qi(zi) = 1, Qi(zi) ≥

0). Such an EM algorithm starts with some initial guess at

the parameters θ(0), and then seeks to maximize L(θ) by

iteratively applying the following two steps:

E-step: For each xi ∈ X , set Qi(zi) = P (zi|xi, θ
(t−1)).

M-step: Set θ(t) to be the θ that maximizes∑n

i=1 EQi
[logP (xi, zi|θ)].

Here, the expectation EQi
is taken with respect to the

distribution Qi(·) over the range of Z in the E-step.

B. The EM Algorithm with Frequent updates

The EM algorithm with frequent updates attempts to ac-

celerate the convergence by frequently updating the parame-

ters. The intuition behind it is that the algorithm can leverage

more up-to-date parameters to process data points and to

potentially speedup convergence. In the EM algorithm, the

distribution influences the likelihood of the parameters via

some sufficient statistics. If the statistics can be updated

incrementally, the cost of computing statistics will grow

linearly with the number of data points whose statistics have

been changed in the E-step. Therefore, performing frequent

updates on the parameters does not necessarily introduce

additional cost of computing statistics. However, it will incur

extra overhead of deriving the parameters from the statistics.

If the overhead is large, it is reasonable to compute the

distribution for a subset of data points (or compute the

distribution in a subrange of the hidden variable) and then

update the parameters.

Updating the parameters frequently in the EM algorithm

can be achieved by two approaches. One is update by block,

which processes a block of data points in the E-step and

then updates the parameters immediately. Its E-step can

utilize the up-to-date parameters to process another block

of data points. Obviously, when selecting the whole set of

data points as a block, the EM algorithm with update by

block is actually the EM algorithm with concurrent updates.

Its two steps can be described as following:

E-step: Pick a block of data points, Bm (Bm ⊆ X), and

for each xi ∈ Bm,

Set Q
(t)
i (zi) = P (zi|xi, θ

(t−1)).
M-step: Set θ(t) to be the θ that maximizes∑n

i=1 EQi
[logP (xi, zi|θ)].

The other one is update by subrange, which recomputes

the distribution over a subrange of the hidden variable and

then updates the parameters. Its E-step can leverage the up-

to-date parameters to recompute the distribution over another

subrange. The EM algorithm with update by subrange starts

with some initial guess at the parameters θ(0) and some

guess at the distribution Q
(0)
i , and then seeks to maximize

L(θ) by iteratively applying the following two steps:

E-step: Select a subrange of Z, Rsub, for each xi ∈ X ,

Let CRsub
=

∑
zi∈Rsub

Q
(t−1)
i (zi);

Set Q
(t)
i (zi) = P (zi|xi, θ

(t−1)) ∗ CRsub
.

M-step: Set θ(t) to be the θ that maximizes∑n

i=1 EQi
[logP (xi, zi|θ)].

We can also combine the two approaches to achieve

updating the parameters frequently. Such a combined version

selects a subrange of Z and computes the distribution for

a block of data points under the subrange in its E-step,

and then performs the M-step to update the parameters.

Obviously, either approach is a special case of the combined

version. Moreover, even the combined version maintains the

convergence properties of the EM algorithm. A brief proof

276

that the EM algorithm with frequent updates (the combined

version) converges is provided in Appendix, and a complete

proof is offered in [14].

Updating the parameters in this paper means only the

operations of deriving the parameters from the statistics (not

including the operations of updating the statistics). In Sec-

tion III, we will illustrate what such statistics are and show

the advantages of frequent updates via EM applications.

The EM algorithm with frequent updates brings the intu-

ition that updating the parameters the more frequently the

better. However, updating the parameters needs to be done

in a centralized way when the algorithm is performed in a

distributed environment. Synchronizing the global resources

may result in significant overhead. In Section IV, we will

discuss how to parallelize the EM algorithm with frequent

updates, and how to control the frequency of parameter

update to achieve a good performance.

III. APPLICATIONS OF THE EM ALGORITHM

In this section, we describe three problems which the EM

algorithm can be applied to, k-means clustering, Fuzzy c-

means clustering and parameter estimation for the Gaussian

Mixture model. We illustrate how to incrementally compute

the statistics and how to derive the parameters from the

statistics when applying the EM algorithm to these problems.

By introducing the statistics, the operations of computing the

parameters are divided into the operations of incrementally

updating the statistics and the operations of deriving the

parameters from the statistics. The cost of updating the

statistics through a pass of all data points is fixed, no

matter how frequently the algorithm updates the parameters.

The frequent updates increase only the cost of deriving

the parameters from the statistics. The more frequently it

updates the parameter, the more cost the algorithm will

incur. Also, we show the advantages of performing frequent

updates.

A. K-means

K-means clustering [9] aims to partition n data points

{x1, x2, ..., xn} into k (k ≤ n) clusters {c1, c2, ..., ck} so as

to minimize the objective function: 〈f〉 = ∑k

i=1

∑
xj∈ci

‖
xj − μci ‖2, where μci = 1

|ci|

∑
xj∈ci

xj is the centroid of

cluster ci.
The most common algorithm of k-means clustering

(Lloyd’s algorithm [8]) can be considered as an application

of the EM algorithm. Its E-step assigns points to the cluster

with the closest mean. Its M-step updates the centroids

(parameters) for all clusters. Let Si (Si =
∑

xj∈ci
xj) and

Wi (Wi = |ci|) be the statistics. The centroid of one cluster

(e.g., i) can be easily obtained by μi =
Si

Wi
. If a particular

point xi changes its cluster assignment from c to c′, the

statistics can be incrementally updated as follows:

Sc = Sc − xi, Sc′ = Sc′ + xi;

Wc = Wc − 1, Wc′ = Wc′ + 1.

B. Fuzzy C-means

Given a set of data points {x1, x2, ..., xn}, Fuzzy c-

means (FCM) [4] aims to assign n data points into C
clusters {c1, c2, ..., ck} so as to minimize the objective

function: Jm =
∑n

i=1

∑C

j μm
ij ‖ xi − cj ‖2, where m

(m > 1) is the fuzzy factor, μij = 1∑
C

k=1
(
‖xi−cj‖

‖xi−ck‖
)

2

m−1

is

the degree of membership of xi belonging to cluster j, and

cj =

∑
N

i=1
μm
ijxi∑

N

i=1
μm
ij

is the centroid of cluster j.

If we describe FCM in the EM setting, its E-step updates

the degree of membership for all points, and its M-step

updates the centroids (parameters) for all clusters. Let Wj

(Wj =
∑n

i=1 μ
m
ij) and Xj (Xj =

∑n

i=1 μ
m
ijxi) be the

statistics in FCM. The centroid of one cluster (e.g., j) can

be easily obtained by cj =
Xj

Wj
. For a data point xi, if its

degree of membership to cluster j changes from μij to μ′ij ,

the statistics can be incrementally updated as follows:

Wj =Wj − (μij)
m + (μ′ij)

m,

Xj =Xj + ((μ′ij)
m − (μij)

m)xi.

C. Gaussian Mixture Model

Given a set of data points {x1, x2, ..., xn} which are

generated by a mixture of k Gaussians, parameter esti-

mation for the Gaussian Mixture model (GMM) aims to

find the means and covariances of the k Gaussians and

the weights that specify how likely each Gaussian is to

be chosen so as to maximize the objective function: � =
1
n

∑n

i=1 log(
∑k

j=1 ωjφ(xi|μj ,Σj)), where φ(xi|μj ,Σj) =
1√

(2π)d·|Σj |
· e− 1

2
(xi−μj)

T ·Σ−1

j
·(xi−μj) represents the prob-

ability of a point coming from a Gaussian source. The

parameters (weight, mean and covariance) of a Gaussian

(e.g., j) are computed by the following equations:

ωj =
1

n

n∑
i=1

γij , μj =

∑n

i=1 γijxi∑n

i=1 γij
,

Σj =

∑n

i=1 γij(xi − μj)(xi − μj)
T∑n

i=1 γij
,

where γij represents the probability of a point coming from

a Gaussian, which is given by: γij =
ωjφ(xi|μj ,Σj)∑
k

j=1
ωjφ(xi|μj ,Σj)

.

When describing GMM in the EM setting, its E-step

estimates the probability of a point from a Gaussian for all

points, and its M-step updates the parameters of Gaussians.

The covariance matrix Σ is typically assumed to be

diagonal to facilitate the computation of its inverse and

determinant. Under such assumption, the statistics in the

GMM algorithm are as follows:

Rj =
n∑

i=1

γij , Xj =
n∑

i=1

γijxi, Sj =
n∑

i=1

γijx
2
i .

Given the statistics, the parameters ωj = Rj/n, μj =
Xj/Rj and Σj = Sj/Rj −X2

j /R
2
j can be easily obtained.

277

For a point xi, if its probability to the source j changes from

γ′ij to γij , the statistics can be computed as follows:

Rj =Rj + γij − γ′ij ,

Xj =Xj + (γij − γ′ij)xi,

Sj =Sj + (γij − γ′ij)x
2
i .

D. Advantages of Performing Frequent Updates

Since the EM algorithm with frequent updates utilizes

the up-to-date parameters to estimate the distribution, it

intuitively outperforms its concurrent update counterpart.

In a preliminary study, we performed multiple experiments

on a single machine to demonstrate the advantages of

frequent updates. Our experimental results show the EM

algorithm with frequent updates converges faster compared

to that with concurrent updates. The results also exhibit

that the frequency of parameter update significantly affects

the performance. The detailed results can be found in [14].

Moreover, some previous results [11], [12] also showed

the advantages of the frequent updates for EM algorithm

in a single machine setting. However, the EM algorithm

with frequent updates in a single machine does not scale.

Parallelizing the EM algorithm with frequent updates is

important for real-world applications. The rest of this paper

will focus on parallelizing the EM algorithm with frequent

updates.

IV. PARALLELIZING FREQUENT UPDATES

The previous sections show that the EM algorithm with

frequent updates is more efficient than that with concurrent

updates. However, parallelizing frequent updates is challeng-

ing. Although computing the distribution and incrementally

updating the local statistics in the E-step can be performed

concurrently in each worker, updating the parameters in the

M-step, which is based on the global statistics, needs to

be done in a centralized way. When processing the dis-

tributed points, the algorithm has to synchronize the global

statistics frequently. Synchronizing the global resources in

a distributed environment may result in considerable over-

head. Therefore, we need to control the parameter update

frequency to achieve a good performance. In this section,

we first illustrates a natural method to parallelize the EM

algorithm with concurrent updates. Then, we present two

methods to parallelize the EM algorithm with frequent

updates. Both of them can control the parameter update

frequency. Moreover, in all the parallel methods, the input

data is randomly divided into multiple equal size partitions,

and each worker holds one partition. The data is kept in the

same worker throughout the iterative process to avoid the

expensive data shuffling among workers.

A. Concurrent Method

In this subsection, we illustrate a traditional method to

parallelize concurrent updates. In this method, each worker

computes the distribution for its local data points and updates

the local statistics concurrently based on the parameters.

After each worker finishes processing its local data points,

all of them synchronize to derive the parameters from the

global statistics. Then, each worker utilizes the updated

parameters to compute the distribution in the next iteration.

We refer to the method as concurrent method.

B. Partial Concurrent Method

Our first method to parallelize the EM algorithm with

frequent updates is a parallel version of the update by block

approach in Section II. Recall that the update by block

approach selects a block of data points for computing the

distribution and then updates the parameters. The block size

can control the parameter update frequency. As shown in

Figure 1, our first parallel method allows each worker to pick

a block of its local data points for computing the distribution

and updating the local statistics. After processing the data

points in the picked blocks, all the workers synchronize

to derive the parameters from the global statistics. Then

each worker leverages the updated parameters to compute

the distribution for another block. All the blocks are of the

same size m. Each worker rotates the block on its local

data points. Since the data points in the picked blocks can

be processed concurrently, we refer to this method as partial

concurrent method. Obviously, the concurrent method is an

extreme case of the partial concurrent method (when each

worker selects all its local data points as one block).

�

�

������ ����	����

���
�
���� � �
���� � �
���� �

������ ����	����

���

Figure 1. Process of the partial concurrent method. The colored box
indicates the picked block of data points for computing the distribution.

The size of the block (i.e., m) plays an important role on

the efficiency of the partial concurrent method. It indicates

the trade-off between the gain from computing the distri-

bution with the frequently updated parameters and the cost

from updating the parameters. Setting the size too small may

incur considerable overhead for updating the parameters.

Setting the size too large may degrade the effect of the

frequent updates. Nevertheless, a quite large range of the

block size can improve the performance. The optimal block

size will be discussed in Section V-D. Our framework also

provides a recommended block size.

C. Subrange Concurrent Method

Our second method to parallelize the EM algorithm with

frequent updates corresponds to the update by subrange

approach in Section II. Recall that the update by subrange

approach recomputes the distribution over the subrange of

278

hidden variables. As shown in Figure 2, our second parallel

method allows each worker to recompute the distribution

among the subrange for its local data points and to update

its local statistics. After each worker finishes recomputing

the distribution among the subrange for all of its local

data points, all the workers synchronize to compute the

parameters based on the global statistics. Then, each worker

utilizes the updated parameters to recompute the distribution

under another subrange in next iteration. Since all the data

points can be processed concurrently under the subrange, we

refer to the second method as subrange concurrent method.

The subrange is randomly picked from the whole range of

hidden variables. The concurrent method is an extreme case

of the subrange concurrent method as well (when the whole

range is picked as the subrange).

�

�

������ ����	����

���
�
���� � �
���� � �
���� �

������ ����	����

����� ����� �����

����� ����� �����

���

Figure 2. Process of the subrange concurrent method. Each worker
recomputes the distribution among the subrange (Ri) for all of its local
data points (Xj).

The subrange concurrent method might be more suitable

for a “winner-take-all” version of EM application (e.g., k-

means), which constrains that one single value of the hidden

variable is assigned probability 1 and all other values are

assigned probability 0 (in k-means, a data point belongs

to its current cluster in probability 1 and belongs to all

other clusters in probability 0). In such an application, if

a subrange does not include the value of probability 1, it

is not necessary to recompute the distribution among the

subrange. By avoiding unnecessary computation, a worker

may dramatically reduce the time of processing data points

in one iteration. Within the running time of one itera-

tion of the concurrent method, the subrange concurrent

method may proceed many iterations. Therefore, although

the subrange concurrent method may increase (or decrease,

here we assume “increase”) the objective function less

than the concurrent method in one single iteration, it still

may increase the objective function faster. Moreover, the

distribution for most of data points usually will not change

after first several iterations under the concurrent method, and

thus the objective function probably increases slowly after

first several iterations. Consequently, the concurrent method

probably does not increase the objective function much more

than the subrange concurrent method in one single iteration,

which makes the subrange concurrent method more superior.

Like the block size in the partial concurrent method,

the size of the subrange also impacts the efficiency of

the subrange concurrent method. We will also discuss the

optimal subrange size in Section V-D.

V. FREEM

In this section, we propose FreEM, a distributed frame-

work for efficient implementation of an EM algorithm. All

the parallel methods mentioned in the previous section,

including concurrent, partial concurrent, and subrange con-

current, are supported by our framework. FreEM is built on

top of an in-memory version of iMapReduce [15]. The in-

memory version of iMapReduce supports iterative process

and loads data into memory for efficient data access. FreEM

also provides high-level APIs, which are exposed to users

for easily implementing EM algorithms.

A. Design of the Framework

Our framework consists of a number of basic workers

and an enhanced worker. Each basic worker essentially

leverages user-defined functions to compute the distribution

and to update the parameters. Besides these operations,

the enhanced worker also picks the subrange of hidden

variable for all the workers under the subrange concurrent

method. Each worker stores a partition of the data points,

the distribution of the corresponding hidden variables, the

local statistics (the statistics for a worker’s local data points)

and the parameters in memory. The partition of points and

the distribution are maintained in a key-value store, point-

based table. Also, the local statistics and the parameters is

maintained in a key-value store, parameter-based table.

B. Implementation of the Framework

Each worker in our framework has one pair of map and

reduce tasks. In general, the map task performs the M-

step, and the reduce task performs the E-step. The map

task of the enhanced worker takes charge of picking the

subrange of hidden variables. Both the point-based table and

the parameter-based table of each worker is maintained by

its reduce task.

To implement an EM algorithm, a user only needs to

override several APIs. FreEM will automatically convert the

EM algorithm to iMapReduce jobs. The first job is used to

split the input data into multiple equal size partitions. The

second job executes the EM algorithm, which consists of

many iterations. In the first iteration, each map task utilizes

a user-defined function (API 1) to obtain the initial guess of

the parameters. Then, each map task sends the parameters

to its paired reduce task. Each reduce task first loads one

partition of the input data and then leverages a user-defined

function (API 2) to compute the distribution and to initialize

its local statistics. After that, a reduce task broadcasts its

local statistics to all map tasks. In each of the following

iterations, each map task uses a user-defined function (API

3) to accumulate the local statistics it received to the global

statistics. When it receives the local statistics from all reduce

tasks, a map task uses another user-defined function (API 4)

to derive the parameters from the global statistics. Then,

each map task sends the updated parameters to its paired

279

reduce task. A reduce task leverages another user-defined

function (API 5) to recompute the distribution (under a given

subrange) and to incrementally update its local statistics

based on the updated parameters. After it finishes processing

the given block of data points, a reduce task broadcasts its

updated local statistics to all map tasks again. Such iterative

process continues until the number of iterations exceeds

a threshold, when our framework terminates all the tasks.

Note that the map task of the enhanced worker also picks

a subrange and broadcasts it to all reduce tasks under the

subrange concurrent method.

C. API

FreEM provides several high-level APIs, which are ex-

posed to users for easily implementing an EM algorithm.

The APIs are as follows:

1. void initPara(Para,Points): specify the initial

guess at the parameters.

2. void initLocalStat(Dist,LocalStat,Para,

Points): compute the distribution based on the initial

guess at the parameters, and initialize the local statistics.

3. void accuStat(LocalStat,GlobalStat): ac-

cumulate the local statistics to the global statistics.

4. void updatePara(GlobalStat,Para): update

the parameters based on the global statistics.

5. void Estep(Dist,Para,SubRange,LocalStat,

Points): recompute the distribution under the given

subrange based on current parameters, and incrementally

update the local statistics.

D. Setting Parameters for Parallel Methods

The size of the block in the partial concurrent method and

the size of the subrange in the subrange concurrent method

can significantly impact the performance of the algorithm. In

this section, we discuss how to determine the optimal block

size and how to seek the optimal subrange size.

1) Optimal block Size: For the partial concurrent method,

let m be the block size. We use Tsgl to represent the

average time of processing one data point, consisting of

the time for computing the distribution and the time for

updating local statistics, and use Tvhd to represent the time

spending on updating the parameters, consisting of the time

for accumulating the global statistics, the time for updating

the parameters, and the time of synchronization. Let F (m)
be total number of data points that one worker needs to

process in the E-step for reaching a specified objective

function value (i.e., convergence point) when the block size

is m. Then,
F (m)
m

is the total number of iterations. Thus,

the total running time for reaching the convergence point is

{F (m) · Tsgl +
F (m)
m

· Tvhd}. Therefore, the optimal m is

given by:
argmin

m
{F (m) · Tsgl +

F (m)

m
· Tvhd},

where Tsgl and Tvhd can be measured. The key of finding

the optimal m is the function F (m).

 3.4e+06
 3.6e+06
 3.8e+06

 4e+06
 4.2e+06
 4.4e+06
 4.6e+06
 4.8e+06

 5e+06
 5.2e+06
 5.4e+06

 6000 12000 18000 24000

f(
m

)

m

k-means
FCM
GMM

(a) Partial Concurrent

 1e+11

 1e+12

 1e+13

 0 1 2 3 4 5 6 7 8 9 10

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Running time (m)

s = 5
s = 10
s = 20
s = 30
s = 40
s = 80

(b) Subrange Concurrent

Figure 3. Deriving optimal size.

We estimate F (m) for different applications of the EM

algorithm on a local cluster. The result, as shown in Figure

3a, demonstrates that F (m) is roughly a linear function of

m, i.e., F (m) = a ·m+ b. Then, we can derive the optimal

block size m∗:

m∗ =

√
b · Tvhd

a · Tsgl

.

Among the factors determining the optimal block size,

only Tvhd and Tsgl can be easily measured. Therefore, we

consider m is linear in
√

Tvhd

Tsgl
. We can explore different

settings of m/
√

Tvhd

Tsgl
to seek the optimal block size. In our

framework, we set m/
√

Tvhd

Tsgl
to be 300 by default. The

default setting achieves near optimal performance as will be

shown in Section VI.

Our framework measures Tvhd and Tsgl in the following

way. When it executes an EM algorithm, FreEM first sets

the block size as a pre-defined number (e.g., n
4·w , where

n is the total number of data points and w is the number

of workers). Then, each worker measures its own Tvhd and

Tsgl, and reports their values to the enhanced worker in each

iteration. The enhanced worker accumulates both of them,

respectively. After a few (e.g., 3) iterations, the enhanced

worker computes the average values of both Tvhd and Tsgl

and specifies 300 ·
√

Tvhd

Tsgl
as the optimal block size.

2) Optimal Subrange Size: For the subrange concurrent

method, let s be the subrange size and r be the size of the

whole range. Suppose Δf(s) is the averaging increase of

the objective function for computing the distribution among

the subrange for all data points and updating the parameters

when the subset size is s. Since the time of processing one

data point is usually proportional to the subrange size, s
r
·Tsgl

is the time for processing one data point under the subrange

concurrent method. Therefore, n
w
· s

r
· Tsgl + Tvhd is the

running time of processing all data points in one iteration.

Consequently, the optimal subrange size is given by:

argmax
s
{ Δf(s)

n
w
· s
r
· Tsgl + Tvhd

}.

We use empirical approaches to seek the optimal subrange

size. Our experimental results reveal that if one subrange

size is better than another during the initial iterations, it

280

 1e+11

 1e+12

 1 2 3 4 5 6 7 8 9

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Running time (m)

Hadoop
Concurrent

Partial Concurrent
Subgroup Concurrent

(a) K-means on Covtype

 1.6e+10

 1.8e+10

 2e+10

 2.2e+10

 2.4e+10

 2.6e+10

 2.8e+10

 3e+10

 3.2e+10

 0 5 10 15 20 25

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Running time (s)

Hadoop
Concurrent

Partial Concurrent

(b) FCM on Covtype

-151.9

-151.8

-151.7

-151.6

-151.5

-151.4

-151.3

 0 5 10 15 20 25 30 35 40

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Running time (m)

Hadoop
Concurrent

Partial Concurrent

(c) GMM on Synth-M

Figure 4. Convergence speed on the local cluster.

 0

 2e+17

 4e+17

 6e+17

 8e+17

 1e+18

 1.2e+18

 1.4e+18

 1.6e+18

 6 8 10 12 14 16 18 20 22 24

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Running time (m)

Hadoop
Concurrent

Partial Concurrent
Subrange Concurrent

(a) K-means on KDDCUP

 1e+12

 1e+13

 1e+14

 1e+15

 1e+16

 1e+17

 5 10 15 20 25 30 35 40 45
O

bj
ec

tiv
e

fu
nc

tio
n

va
lu

e

Running time (m)

Hadoop
Concurrent

Partial Concurrent

(b) FCM on KDDCUP

-151.9
-151.85

-151.8
-151.75

-151.7
-151.65

-151.6
-151.55

-151.5
-151.45

-151.4

 4 6 8 10 12 14 16 18 20 22

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Running time (m)

Hadoop
Concurrent

Partial Concurrent

(c) GMM on Synth-L

Figure 5. Convergence speed on the Amazon EC2 cluster.

is also better in the following iterations (e.g., as shown in

Figure 3b for k-means). Given the observation, we can try

several subrange sizes, and pick the one that achieves the

best performance in the first several iterations.

Also, we provide a scheme to judge when the subrange

concurrent method is superior to the concurrent method.

Obviously, we can expect that the subrange concurrent

method will outperform the concurrent method when the

following inequality holds.

Δf(s)
n
w
· s
r
· Tsgl + Tvhd

>
Δf(r)

n
w
· Tsgl + Tvhd

. (1)

From Inequation 1, we can derive another inequation, which

is as follows:
Δf(s)

Δf(r)
>

r

s
+

r−s
r
· Tvhd

n
w
· Tsgl + Tvhd

. (2)

All the factors in the right side of Inequation 2 either are

known or can be measured. Accordingly, it provides a nice

bound to estimate whether the subrange concurrent method

achieves better performance than the concurrent method.

VI. EVALUATION

In this section, we evaluate FreEM on the applications

described in Section III. All the parallel methods, including

concurrent, partial concurrent, and subrange concurrent, are

implemented and evaluated. We also compare the concurrent

method on FreEM with that on Hadoop, an open source

implementation of MapReduce.

A. Experiment Setup

We build a local cluster and a large-scale cluster on

Amazon EC2 [1]. The local cluster consists of 4 machines.

The Amazon cluster consists of 40 medium instances.

Real-world data sets from UCI Machine Learning Repos-

itory [3] and synthetic data sets are leveraged to evaluate the

applications. The synthetic data sets are generated in such a

way: each dimension of one data point follows a Gaussian

distribution with random mean and standard deviation 1.0.

The data sets are summarized in Table I.

Table I
DATA SETS SUMMARY

Algorithm Data set # Points Dim

k-means/FCM
Covtype 581, 012 54

KDDCUP 4, 898, 431 42

GMM
Synth-M 400, 000 60

Synth-L 1, 000, 000 60

B. Convergence Speed

FreEM allows the EM algorithm to frequently update the

parameters and leverage the up-to-date parameters in its E-

step. Therefore, the EM algorithm with frequent updates has

the potential to reach the convergence point with less work-

load, compared to that with concurrent updates. To evaluate

the effect of frequent updates, we compare the convergence

speed of the partial/subrange concurrent method with that

of the concurrent method. In addition, since MapReduce is

a popular framework, we utilize the convergence speed of

the concurrent method on Hadoop as the base line.

The convergence speed evaluation is performed on both

the local cluster and the Amazon EC2 cluster. All the

methods start with the same initial guess, when compared

on the same data set. We set the number of clusters/sources

as 80 for all experiments. Figure 4 and Figure 5 show the

performance comparison. We can see that the partial con-

current method converges faster than the concurrent method

on all the three EM applications. The subrange concurrent

281

method converges faster and converges to a much better

point than the concurrent method on k-means. Unfortunately,

the subrange concurrent method seems to be slower than the

concurrent method on FCM and GMM with several subrange

sizes we test. Additionally, the convergence speed of the

concurrent method on FreEM is much faster than that on

Hadoop. The reasons are twofold. One is that our framework

maintains data in memory and thus avoids repeatedly loading

data. The other is that FreEM is built on top of iMapReduce,

which is more efficient in supporting iterative process than

Hadoop by using persistent map and reduce tasks. For exam-

ple, iMapReduce is more efficient than Hadoop in supporting

graph based iterative algorithms [15], [16]. Additionally,

according to the experimental results, it seems that the

subrange concurrent method is suitable for “winner-take-

all” version of EM applications and the partial concurrent

method is suitable for the other (“soft”) version of EM

applications.

C. Scaling Performance

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10 15 20 25 30 35 40

S
pe

ed
up

of workers

Linear
Concurrent
Partial Concurrent

(a) Speedup of partial concurrent

 0

 20

 40

 60

 80

 100

 120

10 20 30 40

R
un

ni
ng

 ti
m

e
(m

)

of workers

Partial Concurrent
Concurrent

Hadoop

(b) Performance comparison

Figure 6. Scaling performance of the partial concurrent method.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10 15 20 25 30 35 40

S
pe

ed
up

of workers

Linear
Concurrent
Subrange Concurrent

(a) Speedup of subrange concurrent

 0

 20

 40

 60

 80

 100

 120

 140

10 20 30 40

R
un

ni
ng

 ti
m

e
(m

)

of workers

Subrange Concurrent
Concurrent

Hadoop

(b) Performance comparison

Figure 7. Scaling performance of the subrange concurrent method.

Figure 6 and Figure 7 plot the speedup of FreEM as the

number of workers increases from 10 to 40. The speedup

is measured relative to the running time of 10 workers. The

speedup of the partial concurrent method is tested on GMM,

and that of the subrange concurrent method is measured

on k-means. The speedup of the concurrent method is also

evaluated to be a reference point.

Figure 6 shows that both the concurrent method and

the partial concurrent method exhibit good speedups. The

concurrent method demonstrates a better speedup, since it

updates the parameters only once through one pass of all

data points and thus incurs less synchronization overhead.

Note that the bases of computing speedups for both methods

are different, and thus a better speedup does not necessarily

mean a shorter running time. As shown in Figure 6b, the

partial concurrent method still converges faster than the

concurrent method even on 40 workers. Since it has a

better speedup, the concurrent method will obtain the same

convergence speed as the partial concurrent method when

the number of workers reaches some point. At that point,

the partial concurrent method will degrade to the concurrent

method by setting the right block size. For similar reasons,

the concurrent method also exhibits a better speedup than

the subrange concurrent method. However, the subrange

concurrent method still runs much faster than the concurrent

method even on 40 workers, as shown in Figure 7b.

D. Verifying Optimal Block Size

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 300 600 900 1200 1500

S
pe

ed
up

m/Sqrt(ratio)

GMM
k-means

FCM

Figure 8. Speedup. X-axis represents the values of m/

√
Tvhd

Tsgl
.

In Section V-D, we discussed the optimal block size

depends on several factors. Since only Tvhd and Tsgl can be

easily measured, we set the block size based on them. Our

framework sets the block size m in proportional to
√

Tvhd

Tsgl
.

We perform experiments of all the three EM applications

on our local cluster to see the effects of various settings

of m/
√

Tvhd

Tsgl
. Figure 8 shows the speedup with different

settings. From the figure, we can see that all the applications

demonstrate the best speedup when m/
√

Tvhd

Tsgl
is set to be

around 300. This is the reason why our framework sets

m/
√

Tvhd

Tsgl
= 300 by default.

VII. RELATED WORK

The EM algorithm has been applied very widely. Due to

the popularity of the EM algorithm, many approaches for

accelerating it have been proposed. For example, Dempster

et al. [6] and Meng et al. [10] present a partial M-step may

accelerate the algorithm when maximizing the likelihood in

the M-step is inefficient. Such a partial M-step attempts

to find the new estimates for the parameters improving

the likelihood rather than maximizing it. In contrast, our

work focuses on how to frequently perform the M-step to

accelerate the algorithm. As the most relevant works, the

works of Neal et al. [11] and Thiesson et al. [12] also show

a partial E-step which selects a block of data points for

computing the distribution may accelerate the EM algorithm

in the single machine setting. Neal et al. [11] prove that

such a variant of the EM algorithm converges. Thiesson et

282

al. [12] provide an empirical method to figure out the near

optimal block size. Our proof is inspired by the work of

Neal et al., but goes further. Specifically, we prove that

not only selecting a block of data points for computing

the distribution but also computing the distribution under a

subrange of hidden variables can guarantee the convergence.

Compared to the work of Thiesson et al., which is in the

single machine setting, our work considers the scenario

of a distributed environment. We propose a distributed

framework for efficiently implementing the EM algorithm

with frequent updates.

There are a number of efforts targeted on parallelizing the

EM algorithm as well. Most of them focused on efficiently

updating the parameters in the M-step. For examples, Wolfe

et al. [13] propose an approach to distribute both the E-step

and the M-step based on MapReduce. Kowalczyk et al. [7]

present a gossip-based distributed implementation of the EM

algorithm for GMM. While our work has a different focus:

we study how to frequently update the parameters to speed

up convergence for a wide class of EM algorithms.

VIII. CONCLUSION

Motivated by the observations that the EM algorithm

performing the frequent updates is much more efficient

than it performing the concurrent updates, we propose two

approaches to parallelize the EM algorithm with frequent

updates in a distributed environment so as to scale to

massive data sets. Also, we prove that the EM algorithm

with frequent updates converges. To support the efficient

implementation of frequent updates for the EM algorithm,

we design and implement a distributed framework, FreEM.

We deploy FreEM on both a local cluster and the Amazon

EC2 cloud, and evaluate its performance in the context

of three well-known EM applications: k-means, FCM and

GMM. The evaluation results show that the EM algorithm

with frequent updates can run much faster than it with

traditional concurrent updates even when both are imple-

mented on FreEM. In addition, since FreEM is on top of

iMapReduce which is more efficient than MapReduce in

supporting iterative algorithms, FreEM is more efficient than

MapReduce in supporting the EM algorithm.

ACKNOWLEDGMENTS

The authors are grateful to the anonymous reviewers for

their insightful comments and suggestions. This work is

partially supported by NSF grant CCF-1018114. Yanfeng

Zhang was a visiting student at UMass Amherst when this

work was performed.

REFERENCES

[1] Amazon Elastic Compute Cloud (Amazon EC2). http://aws.
amazon.com/ec2/.

[2] Hadoop. http://hadoop.apache.org/.
[3] UCI Machine Learning Repository. http://archive.ics.uci.edu/

ml/datasets.html.

[4] J. C. Bezdek. Pattern Recognition with Fuzzy Objective
Function Algorithms. Kluwer Academic Publishers, 1981.

[5] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In OSDI ’04, 2004.

[6] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum
likelihood from incomplete data via the EM algorithm. Jour-
nal of the Royal Statistical Society, Series B, 39(1), 1977.

[7] W. Kowalczyk and N. Vlassis. Newscast EM. In NIPS ’04,
pages 713–720, 2005.

[8] S. Lloyd. Least squares quantization in PCM. Information
Theory, IEEE Transactions on, 28(2):129 – 137, mar 1982.

[9] J. B. Macqueen. Some methods of classification and analysis
of multivariate observations. In Proceedings of the Fifth
Berkeley Symposium on Mathematical Statistics and Prob-
ability, pages 281–297, 1967.

[10] X. L. Meng and D. B. Rubin. Maximum Likelihood Es-
timation via the ECM Algorithm: A General Framework.
Biometrika, 80(2):267–278, 1993.

[11] R. Neal and G. E. Hinton. A view of the EM algorithm that
justifies incremental, sparse, and other variants. In Learning
in Graphical Models, pages 355–368, 1998.

[12] B. Thiesson, C. Meek, and D. Heckerman. Accelerating EM
for large databases. Mach. Learn., 45(3):279–299, Dec. 2001.

[13] J. Wolfe, A. Haghighi, and D. Klein. Fully distributed EM
for very large datasets. ICML ’08, 2008.

[14] J. Yin, Y. Zhang, and L. Gao. Accelerating expectation-
maximization algorithms with frequent updates. Tech. Rep.,
2012. http://rio.ecs.umass.edu/mnilpub/papers/freem.pdf.

[15] Y. Zhang, Q. Gao, L. Gao, and C. Wang. iMapReduce: A
distributed computing framework for iterative computation.
In DataCloud ’11, pages 1112 –1121.

[16] Y. Zhang, Q. Gao, L. Gao, and C. Wang. PrIter: A distributed
framework for prioritized iterative computations. In SOCC
’11, pages 13:1–13:14, 2011.

APPENDIX

For proving the convergence of the EM algorithm with frequent
updates, we first consider the following derivation:

L(θ) =

n∑
i=1

logP (xi|θ) =

n∑
i=1

log
∑
zi

Qi(zi)
P (xi, zi|θ)

Qi(zi)

≥

n∑
i=1

∑
zi

Qi(zi) log
P (xi, zi|θ)

Qi(zi)
.

The last step of this derivation is given by Jensen’s inequality.
When Qi(zi) = P (zi|xi, θ) for any i, the last step of the derivation
holds with equality. Let

J(Q, θ) =

n∑
i=1

∑
zi

Qi(zi) log
P (xi, zi|θ)

Qi(zi)
,

then we have L(θ) ≥ J(Q, θ). We assume that P (xi, zi|θ) is a
continuous function of θ. We can show that if the local maximum
of J(Q, θ) occurs at Q∗ and θ∗, the local maximum of L(θ)
occurs at θ∗ as well. Hence, if a variant of the EM algorithm
gradually increases J(Q, θ), it will converge to a local maximum
of L(θ). Additionally, we can prove that each iteration of the EM
algorithm with frequent updates either improves J(Q, θ) or leaves
it unchanged. Therefore, we have the following theorem.

Theorem A.1: The EM algorithm with frequent updates con-
verges to a local maximum of L(θ).

283

