
Co-ClusterD: A Distributed Framework for Data
Co-Clustering with Sequential Updates

Xiang Cheng, Sen Su, Lixin Gao, Fellow, IEEE, and Jiangtao Yin

Abstract—Co-clustering has emerged to be a powerful data mining tool for two-dimensional co-occurrence and dyadic data. However,

co-clustering algorithms often require significant computational resources and have been dismissed as impractical for large data sets.

Existing studies have provided strong empirical evidence that expectation-maximization (EM) algorithms (e.g., k-means algorithm) with

sequential updates can significantly reduce the computational cost without degrading the resulting solution. Motivated by this

observation, we introduce sequential updates for alternate minimization co-clustering (AMCC) algorithms which are variants of EM

algorithms, and also show that AMCC algorithms with sequential updates converge. We then propose two approaches to parallelize

AMCC algorithms with sequential updates in a distributed environment. Both approaches are proved to maintain the convergence

properties of AMCC algorithms. Based on these two approaches, we present a new distributed framework, Co-ClusterD, which

supports efficient implementations of AMCC algorithms with sequential updates. We design and implement Co-ClusterD, and show its

efficiency through two AMCC algorithms: fast nonnegative matrix tri-factorization (FNMTF) and information theoretic co-clustering

(ITCC). We evaluate our framework on both a local cluster of machines and the Amazon EC2 cloud. Empirical results show that AMCC

algorithms implemented in Co-ClusterD can achieve a much faster convergence and often obtain better results than their traditional

concurrent counterparts.

Index Terms—Co-Clustering, concurrent updates, sequential updates, cloud computing, distributed framework
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1 INTRODUCTION

CO-CLUSTERING is a powerful data mining tool for two-
dimensional co-occurrence and dyadic data. It has

practical importance in a wide range of applications such as
text mining [1], recommendation systems [2], and the analy-
sis of gene expression data [3]. Typically, clustering algo-
rithms leverage an iterative reÞnement method to group
input points into clusters. The cluster assignments are per-
formed based on the current cluster information (e.g., the
centroids of clusters in k-means clustering). The resulted
cluster assignments can be utilized to further update the
cluster information. Such a reÞnement process is iterated till
the cluster assignments become stable. Depending on how
frequently the cluster information is updated, clustering
algorithms can be broadly categorized into two classes. The
Þrst class updates the cluster information after all input
points have updated their cluster assignments. We refer to
this class of algorithms as clustering algorithms with concur-
rent updates. In contrast, the second class updates the cluster
information whenever a point changes its cluster assign-
ment. We refer to this class of algorithms as clustering algo-
rithms with sequential updates.

A number of existing studies (e.g., [4], [5], [6], [7], [8])
have provided strong empirical evidence that expectation-
maximization (EM) algorithms (e.g., k-means algorithm)
with sequential updates can signiÞcantly reduce the compu-
tational cost without degrading the resulting solution. Moti-
vated by this observation, we introduce sequential updates
for alternate minimization co-clustering(AMCC) algorithms
[9], which are variants of EM algorithms. We show that
AMCC algorithms with sequential updates converge.
Despite the potential advantages of sequential updates, par-
allelizing AMCC algorithms with sequential updates is
challenging. SpeciÞcally, if we let each worker machine
update the cluster information sequentially, it might result
in inconsistent cluster information across worker machines
and thus the convergence properties of co-clustering algo-
rithms cannot be guaranteed; if we synchronize the cluster
information whenever a cluster assignment is changed, it
will incur large synchronization overhead and thus result in
poor performance in a distributed environment. Conse-
quently, AMCC algorithms with sequential updates cannot
be easily performed in a distributed manner.

Toward this end, we propose two approaches to parallelize
sequential updates for AMCC algorithms. The Þrst approach
is referred to as dividing clusters. It divides the problem of clus-
tering rows (or columns) into independent tasks and each of
which is assigned to a worker. In order to make tasks indepen-
dent, we randomly divide row (or column) clusters into mul-
tiple non-overlapping subsets at the beginning of each
iteration, and let each worker perform row (or column) clus-
tering with sequential updates on one of these subsets.

The second approach is referred to as batching points.
Relaxing the stringent requirement of sequential updates, it
parallelizes sequential updates by performing batch updates.
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Instead of updating the cluster information after each
change in cluster assignments, batch updates perform a
batch of row (or column) cluster assignments, and then
update the cluster information. We typically divide rows
and columns of the input data matrix into several batches
and let all workers perform row (or column) clustering with
concurrent updates on each batch.

We formally prove that the dividing clusters and batch-
ing points approaches can maintain the convergence prop-
erties of AMCC algorithms. Based on these two approaches,
we design and implement a distributed framework, Co-
ClusterD, to support efÞcient implementations of AMCC
algorithms with sequential updates. Co-ClusterD provides
an abstraction for AMCC algorithms with sequential
updates and allows programmers to specify the sequential
update operations via simple APIs. As a result, it eases the
process of implementing AMCC algorithms and frees pro-
grammer from the detailed mechanisms such as communi-
cation and synchronization between workers. We evaluate
Co-ClusterD through two AMCC algorithms: fast nonnega-
tive matrix tri-factorization (FNMTF) [10] and information
theoretic co-clustering (ITCC) [11]. Experimenting on a local
cluster of machines and the Amazon EC2 cloud, we show
that AMCC algorithms implemented in Co-ClusterD can
run faster and often get better results than their traditional
concurrent counterparts. In summary, we make three con-
tributions in this paper.

� We introduce sequential updates for alternate mini-
mization co-clustering (AMCC) algorithms and
show that AMCC algorithms with sequential
updates converge.

� We propose two approaches (i.e., dividing clusters
and batching points) to parallel AMCC algorithms
with sequential updates in a distributed environ-
ment. We prove that both of these two approaches
can maintain the convergence properties of AMCC
algorithms. We also provide solutions for setting
optimal parameters for these two approaches.

� We design and implement a distributed framework
called Co-ClusterD which can support efÞcient
implementations of AMCC algorithms with sequen-
tial updates. Empirical results on both a local cluster
and the Amazon EC2 cloud show that AMCC algo-
rithms implemented in Co-ClusterD can achieve a
much faster convergence and often obtain better
results than their traditional concurrent counterparts.

The rest of this paper is organized as follows. Section 2
gives an overview of AMCC and shows how update strat-
egies affect its performance. Section 3 presents our
approaches to parallelize AMCC algorithms with sequen-
tial updates. In Section 4, we present the design and
implementation of our co-clus tering framework. Section 5
is devoted to the experimental results. We discuss related
work in Section 6 and conclude the paper in Section 7.

2 ALTERNATE MINIMIZATION BASED

CO-CLUSTERING AND SEQUENTIAL UPDATE

In this section, we Þrst describe the co-clustering problem
we focus on. Next, we introduce sequential updates for

alternate minimization co-clustering algorithms. Then, tak-
ing two AMCC algorithms (i.e., fast nonnegative matrix tri-
factorization [10] and information theoretic co-clustering
[11]) as examples, we show how sequential updates work.
At last, we elaborate the performance comparison between
concurrent updates and sequential updates through
FNMTF and ITCC on a single machine.

2.1 Alternate Minimization Based Co-Clustering

Co-clustering is also known as bi-clustering, block clus-
tering or direct clustering [12]. Formally, given a m� n
matrix Z, a co-clusteringcan be deÞned by two maps r

and g, which groups rows and columns of Z into k and l
disjoint or hard clusters respectively. In particular, rðuÞ =
p (1 � p � k) means that row u is in row cluster p, and
gðvÞ ¼ q (1 � q � l) indicates that column v is in column
cluster q. If we reorder rows and columns of Z and let
rows and columns of the same cluster be close to each
other, we obtain k� l correlated sub-matrices. Each sub-
matrix is referred to as a co-cluster. For example, as shown
in Fig. 1, given 4� 4 matrix A, after reordering according
to rðuÞ and gðvÞ, we get matrix B which contains four
correlated sub-matrices (i.e., co-clusters).

The co-clustering problem can be viewed as a lossy data
compression problem [9]. Given a speciÞed number of row
and column clusters, it attempts to retain as much informa-
tion as possible about the original data matrix in terms of
statistics based on the co-clustering. Let ~Z be an approxima-
tion of the original data matrix Z. The goodness of the
underlying co-clustering can be quantiÞed by the expected
distortion between Z and ~Z, which is shown as follows.

E½dfðZ; ~ZÞ� ¼
Xm
u¼1

Xn
v¼1

wuvdfðzuv; ~zuvÞ

¼
Xk
p¼1

X
fujrðuÞ¼pg

Xl

q¼1

X
fvjgðvÞ¼qg

wuvdfðzuv; spqÞ;
(1)

where df is a distance measure and can be any member of
the Bregman divergence family [13] (e.g., Euclidean dis-
tance), zuv and ~zuv are the elements ofZ and ~Z respectively,
wuv denotes the pre-speciÞed weight of pair (u, v), spq is the
statistic derived from the co-cluster ( p, q) of Z, and is used
to approximate the element in the co-cluster ( p, q) of Z. spq is
considered as the cluster information of data co-clustering. The
co-clustering problem is then to Þnd ( r, g) such that equa-
tion (1) is minimized.

To Þnd the optimal ( r, g), a broadly applicable approach
is to leverage an iterative process, which monotonically
decreases the objective function above by intertwining
both row and column clustering iterations. Such kind of co-
clustering approach is referred to as alternate minimization

Fig. 1. According to rðuÞ and gðvÞ, reorder input data matrix A such that
the resulting sub-matrices (i.e., co-clusters) in B are correlated.
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co-clustering[9], which is considered as our main focus in
this paper.

Typically, AMCC algorithms repeat the following four
steps till convergence.

Step I: Keep g Þxed, for every row u, Þnd its new row
cluster assignment by the following equation:

rðuÞ ¼ argminp

Xl

q¼1

X
fvjgðvÞ¼qg

wuvdfðzuv; spqÞ: (2)

Step II: With respect to (r, g), update the cluster informa-
tion (i.e., the statistic of each co-cluster) by the fol-
lowing equation:

spq ¼ argminspq

X
fujrðuÞ¼pg

X
fvjgðvÞ¼qg

wuvdfðzuv; spqÞ: (3)

Step III: Keep r Þxed, for every column v, Þnd its new col-
umn cluster assignment by the following equation:

gðvÞ ¼ argminq

Xk
p¼1

X
fujrðuÞ¼pg

wuvdfðzuv; spqÞ: (4)

Step IV: The same asStep II.

In the above general algorithm, some implementations
might combine Step II and Step IV into one step.

2.2 Sequential Updates

Many existing studies [4], [5], [6], [7], [8] have provided
strong empirical evidence that expectation-maximization
algorithms (e.g., k-means algorithm) with sequential
updates can signiÞcantly reduce the computational cost
without degrading the resulting solution. Since AMCC algo-
rithms are variants of EM algorithms, we introduce sequen-
tial updates for AMCC algorithms. Unlike concurrent
updates that perform the cluster information update after
all rows (or columns) have updated their cluster assign-
ments, sequential updates perform the cluster information
update after each change in cluster assignments.

SpeciÞcally, AMCC algorithms with sequential updates
repeat the following six steps till convergence.

Step I: Keep g Þxed, pick a row u in some order, Þnd its
new row cluster assignment by Eq. (2).

Step II: With respect to (r, g), update the involved statis-
tics of co-clusters by Eq. (3) onceu changes its
row cluster assignment.

Step III: RepeatStep I and Step II until all rows have been
processed.

Step IV: Keep r Þxed, pick a column v in some order, Þnd
its new column cluster assignment by Eq. (4).

Step V: With respect to (r, g), update the involved statis-
tics of co-clusters by Eq. (3) oncev changes its col-
umn cluster assignment.

Step VI: RepeatStep IV and Step V until all columns have
been processed.

The following theorem shows that sequential updates
maintain the convergence properties of AMCC algorithms.

Theorem 1. Alternate minimization based co-clustering algo-
rithms with sequential updates monotonically decrease the
objective function given by Eq. (1).

Proof. The overall approximation error CðZ; ~ZÞ in Eq. (1)
can be rewritten as the sum over the approximation
errors due to each row and its assignment, i.e., CðZ; ~ZÞ =Pm

u¼1 Crðu; rðuÞÞ, where Crðu; rðuÞÞ is the approximation
error due to row u and its assignment rðuÞ, and
Crðu; rðuÞÞ =

Pl
q¼1

P
fvjgðvÞ¼qg wuvdfðzuv; spqÞ. Since per-

forming row clustering for a given row u by Eq. (2) will
not increase Crðu; rðuÞÞ, CðZ; ~ZÞ will not be increased in
Step1. In addition, CðZ; ~ZÞ can be also rewritten as the
sum over the approximation errors due to the statistic of
each co-cluster, i.e.,CðZ; ~ZÞ =

Pk
p¼1

Pl
q¼1 CsðspqÞ, where

CsðspqÞ is the approximation error due to the statistic of
co-cluster ðp; qÞ, and CsðspqÞ ¼

P
fujrðuÞ¼pg

P
fvjgðvÞ¼qg

wuvdfðzuv; spqÞ. Since updating the statistic of each
involved co-cluster by Eq. (3) will not increase CsðspqÞ,
CðZ; ~ZÞ will not be increased in Step 2. Therefore, alter-
nate minimization based co-clustering algorithms with
sequential updates monotonically decrease the objective
function given by Eq. (1) during the row clustering
phase. For the column clustering phase, the proof is simi-
lar and is omitted for brevity. tu

We observe that, in hard clustering, a row (or column)
re-assignment only gives rise to the update of the cluster
information related to the reassigned row (or column).
Therefore, for AMCC algorithms with sequential
updates, after a row (or column) re-assignment occurs,
we only need to update the related cluster information
instead of recalculating all the cluster information. In
this way, we can signiÞcantly reduce the overhead of
sequential updates. In fact, the ideal of sequential
updates can also be adopted by soft clustering algo-
rithms. However, in soft clustering, a row (or column)
re-assignment requires the update of all the cluster infor-
mation, which might cause la rge computational over-
head. Moreover, since the cluster information in AMCC
algorithms is the statistics derived from co-clusters, we
can incrementally update the related statistics by adding
or subtracting the effects of the reassigned row (or col-
umn), and further reduce the computational overhead of
sequential updates.

In the following section, we will use two concrete exam-
ples to show the details of sequential updates and how to
incrementally update the cluster information.

2.3 Examples: FNMTF and ITCC

Many AMCC algorithms with different Bregman divergen-
ces (e.g., [3], [10], [11], [14]) have been proposed in recent
years. However, all of these algorithms are proposed with
concurrent updates. To show how sequential updates work
and how to incrementally update the cluster information,
we take two AMCC algorithms, FNMTF [10] and ITCC [11],
as examples. One considers the Euclidean distance as
the distance measure, and the other considers the
Kullback� Leibler divergence as the distance measure.
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2.3.1 FNMTF

FNMTF considers the Euclidean distance as the distance
measure between the original matrix and the approximation
matrix. SpeciÞcally, FNMTF constrains the factor matrices F
and G to be cluster indicator matrices and tries to minimize
the following objective function:

jjZ � FSGT jj2 s:t: F 2 Cm�k; G 2 Cn�l; (5)

where Z is the input data matrix, and matrix S is composed
of the statistics given on co-clusters determined by F and G.

FNMTF alternately solves the three variables F, G and S
in Eq. (5), and iterates till convergence. In each iteration, it
contains the following three steps.

First, Þxing G and S, for each row zu� in Z, Þnd its new
cluster assignment using the following equation:

fup ¼ 1; argminpjjzu� � ~hp�jj2;
0; otherwise;

(
(6)

where ~hp� is the p-th row of SGTSGT and serves as therow-cluster
prototype which is similar to the ÒcentroidÓ in k-means
clustering.

Second, ÞxingF and S, for each column z�v in Z, Þnd its
new cluster assignment using the following equation:

gvq ¼ 1; argminqjjz�v � ~m�qjj2;
0; otherwise;

�
(7)

where ~m�q is the q-th column of FSFS and serves as thecolumn-
cluster prototype.

In the last step of this iteration, according to the current
co-clustering determined by F and G, it updates each ele-
ment of S by the following equation:

spq ¼
P
fujrðuÞ¼pg

P
fvjgðvÞ¼qg zuv

jpj � jqj ; (8)

where jpj denotes the number of rows in row cluster p and
jqj denotes the number of columns in column cluster q. spq
provides the statistic of co-cluster (p, q), which is the mean
of all elements in co-cluster (p, q).

The procedures of FNMTF with concurrent updates are
summarized in Algorithm 1.

Algorithm 1. FNMTF with Concurrent Updates

1 Initialize G 2 Cn�l and F 2 Cm�k with arbitrary cluster
indicator matrices;

2 repeat
3 Fixing F and G, update S by (8);
4 Fixing F and S, update G by (7);
5 Fixing G and S, update F by (6);
6 until converges;

Unlike FNMTF with concurrent updates, FNMTF with
sequential updates requires the most up-to-date S to per-
form row (or column) cluster assignments and thus S
should be updated immediately once a row (or column)
changes its cluster assignment.

Since a row (or column) re-assignment involves only two
rows (or columns) of S and the elements of S are the means

of co-clusters, we can update S incrementally and thus
reduce the overhead of frequent updates of S. Algorithm 2
shows the incremental update for S after a particular row
zu� changes its row cluster assignment from p to p̂. The incre-
mental update for S after reassigning a column can be done
in a similar way and is omitted for brevity.

Algorithm 2. Incremental Update for S

1 for q 1 to l do

2 spq ¼
spq �jpj�jqj�

P
fujrðuÞ¼pg

P
fvjgðvÞ¼qg zuv

ðjpj�1Þ�jqj ;

3 sp̂q ¼
sp̂q �jp̂j�jqjþ

P
fujrðuÞ¼pg

P
fvjgðvÞ¼qg zuv

ðjp̂jþ1Þ�jqj ;

4 jpj ¼ jpj � 1 ;
5 jp̂j ¼ jp̂j þ 1 ;

The procedures of FNMTF with sequential updates are
summarized in Algorithm 3.

Algorithm 3. FNMTF with Sequential Updates

1 Initialize G 2 Cn�l and F 2 Cm�k with arbitrary cluster
indicator matrices;

2 Initialize S by (8);
3 repeat
4 Fixing G;
5 foreach zu� 2 Z do
6 update F by (6);
7 update S with Algorithm (2);
8 end
9 Fixing F;

10 foreach z�v 2 Z do
11 updateG by (7);
12 update S in an incremental way (similar to

Algorithm (2));
13 end
14 until converges;

2.3.2 ITCC

ITCC considers a non-negative matrix as the joint probabil-
ity distribution of two discrete random variables and for-
mulates the co-clustering problem as an optimization
problem in information theory. Formally, let X and Y be
discrete random variables taking values in fxigmi¼1 and
fyignj¼1 respectively. Suppose we want to cluster X into k

disjoint clusters fx̂igki¼1 and Y into l disjoint clusters fŷjglj¼1
simultaneously. ITCC tries to Þnd a co-clustering, which
minimizes the loss in mutual information:

IðX;Y Þ � IðX̂; Ŷ Þ ¼ DðpðX;Y ÞjjqðX;Y ÞÞ; (9)

where IðX;Y Þ is the mutual information between X and Y ,
Dð�jj�Þ denotes the Kullback� Leibler divergence, pðX;Y Þ
denotes the joint probability distribution between X and Y ,
and qðX;Y Þ is a distribution of the form

qðx; yÞ ¼ pðx̂; ŷÞpðxjx̂ÞpðyjŷÞ; x 2 x̂; y 2 ŷ; (10)

where pðx̂; ŷÞ ¼P
x2x̂

P
y2ŷ pðx; yÞ, and pðxjx̂Þ ¼ pðxÞ

pðx̂Þ for
x̂ ¼ CXðxÞ and 0 otherwise, and similarly for pðyjŷÞ. pðx̂; ŷÞ
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provides the statistic of co-cluster ðx̂; ŷÞ, which is the sum of
all the elements in co-cluster ðx̂; ŷÞ. pðX;Y Þ and qðX;Y Þ are
both m� n matrices, pðX̂; Ŷ Þ is a k� l matrix, pðXjX̂Þ and
pðY jŶ Þ are m� k and n� l column orthogonal matrices
respectively.

ITCC starts with an initial co-clustering ðCX;CY Þ and
reÞnes it through an iterative row and column clustering
process. According to ðCX;CY Þ, ITCC computes the follow-
ing three distributions:

qðX̂; Ŷ Þ; qðXjX̂Þ; qðY jŶ Þ; (11)

where qðX̂; Ŷ Þ ¼ pðX̂; Ŷ Þ, qðXjX̂Þ ¼ pðXjX̂Þ , and qðY jŶ Þ ¼
pðY jŶ Þ.

For row clustering, Þxing CY , it tries to Þnd new cluster
assignment for each row x as

CXðxÞ ¼ argminx̂DðpðY jxÞjjqðY jx̂ÞÞ; (12)

where qðyjx̂Þ ¼ pðyjŷÞpðŷjx̂Þ and serves as therow-cluster pro-
totype. Recall that pðY jŶ Þ is a n� l column orthogonal
matrix. It implies that given pðY jŶ Þ and a row of pðX̂; Ŷ Þ,
we can get the corresponding row-cluster prototype with-
out matrix multiplication. Then, according to the new row
cluster assignment, it updates the distributions in (11).

For column clustering, Þxing CX, it tries to Þnd new clus-
ter assignment for each column y as

CY ðyÞ ¼ argminŷDðpðXjyÞjjqðXjŷÞÞ; (13)

where qðxjŷÞ ¼ pðxjx̂Þpðx̂jŷÞ and serves as thecolumn-cluster
prototype. Then, according to the new column cluster assign-
ment, it updates the distributions in (11).

The procedures of ITCC with concurrent updates are
summarized in Algorithm 4.

Algorithm 4. ITCC with Concurrent Updates

1 Initialize CX and CY with arbitrary cluster indicator matrices;
2 Initialize distributions in (11);
3 repeat
4 Fixing CY , update CX by Eq. (12);
5 update qðX̂; Ŷ Þ and qðXjX̂Þ;
6 Fix CX, update CY by Eq. (13);
7 update qðX̂; Ŷ Þ and qðY jŶ Þ;
8 until converges;

To sequentialize ITCC, we should update the distribu-
tions in (11) once a row (or column) of pðX;Y Þ changes its
cluster assignment. Since qðx̂; ŷÞ is the sum of all the ele-
ments in the corresponding co-cluster, if a row (or column)
changes its cluster assignment, only two rows (or columns)
of qðX̂; Ŷ Þ need to be updated. Thus, we can update qðX̂; Ŷ Þ
incrementally. Moreover, for distribution qðXjX̂Þ, according
to Eq. (10) and Eq. (11), it can be also obtained in an incre-
mental manner. Since qðXÞ is constant, we only perform
incremental update on qðX̂Þ and calculate qðXjX̂Þ whenever
we need. Algorithm 5 shows how to incrementally update
qðX̂; Ŷ Þ and qðX̂Þ after a particular row x changes its column
cluster assignment from x̂ to x̂�. The incremental update for

qðX̂; Ŷ Þ and qðŶ Þ after reassigning a column can be done in
a similar way and is omitted for brevity.

Algorithm 5. Incremental Update for qðX̂; Ŷ Þ and qðX̂Þ
1 for ŷ 1 to l do
2 qðx̂; ŷÞ ¼ qðx̂; ŷÞ �P

i2x̂;j2ŷ xij;
3 qðx̂�; ŷÞ ¼ qðx̂�; ŷÞ þP

i2x̂;j2ŷ xij;
4 qðx̂Þ ¼ qðx̂Þ � qðxÞ;
5 qðx̂�Þ ¼ qðx̂�Þ þ qðxÞ;

The procedures of ITCC with sequential updates are
summarized in Algorithm 6.

Algorithm 6. ITCC with Sequential Updates

1 Initialize CX and CX with arbitrary cluster indicator
matrices;

2 Initialize the distributions in (11);
3 repeat
4 Fix CY ;
5 foreach x 2 X do
6 update CX by Eq. (12);
7 update qðX̂; Ŷ Þ and qðXjX̂Þ with Algorithm (5);
8 Fix CX;
9 foreach y 2 Y do

10 update CY by Eq. (13);
11 update qðX̂; Ŷ Þand qðY jŶ Þ in an incremental way

(similar to Algorithm (5));
12 until converges;

2.4 Concurrent versus Sequential

To show the beneÞts of sequential updates for AMCC algo-
rithms, we implement FNMTF and ITCC with different
update strategies in Java. Two real-world data sets Coil20
[15] and 20-Newsgroup [16] are used to evaluate the co-
clustering algorithms. For the 20-Newsgroup data set, we
selected the top 1,000 words by mutual information. The
details of the data sets are summarized in Table 1. The num-
ber of row (or column) clusters is set to 20. For the same
co-clustering algorithm, we report the minimum objective
function value it can obtain and the corresponding running
time. The clustering results are also evaluated by two
widely used metrics, i.e., clustering accuracy and normal-
ized mutual information (NMI).

The experiments are performed on a single machine,
which has Intel Core 2 Duo E8200 2.66 GHz processor, 3 GB
of RAM, 1 TB hard disk, and runs 32-bit Linux Debian 6.0
OS. For a fair comparison, all of these algorithms use the
same cluster assignments for initialization. Moreover, we
run each algorithm 10 times, and use a different cluster ini-
tialization for each time. The average results of these algo-
rithms are reported.

TABLE 1
Description of Data Sets

Data sets samples features non-zeros

Coil20 1,440 1,024 967,507
NG20 4,000 1,000 266,152
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As shown in Figs. 2 and 3, both of these two AMCC
algorithms with sequential updates converge faster and
get better results than their concurrent counterparts. It is

not surprising that the AMCC algorithms with sequential
updates also outperform their concurrent counterparts in
terms of clustering accuracy and NMI as shown in
Tables 2 and 3. Such encouraging results motivate us to
provide parallel solutions for AMCC algorithms with
sequential updates.

3 PARALLELIZING ALTERNATE MINIMIZATION

CO-CLUSTERING ALGORITHMS WITH

SEQUENTIAL UPDATES

Parallelizing alternate minimization co-clustering algo-
rithms with sequential updates is challenging. In this sec-
tion, we propose two approaches to solve this challenge.

3.1 Dividing Clusters Approach

Suppose in a distributed environment which consists of a
number of worker machines, each worker independently
performs sequential updates during the iterative process.
The statistics of co-clusters (Scc) should be updated when-
ever a row (or column) changes its cluster assignment.
However, since the workers run concurrently, it may result
in inconsistent Scc across workers. Thus, the convergence
properties of co-clustering algorithms cannot be main-
tained. Therefore, we a propose dividing clusters approach
to solve this problem.

The details of the dividing clusters approach are described
as follows. Suppose we want to group the input data matrix
into k row clusters and l column clusters, the number of
workers is p (p � minfk2 ; l2g), and each worker wi holds a sub-
set of rows Ri and a subset of columnsCi. When performing
row clustering, we randomly divide row clusters Sr into p
non-overlapping row subsets Sr

1; S
r
2; . . . ; S

r
p, and guarantee

that each subset contains at least two clusters. These subsets
are distributed to each worker in a one-to-one manner. When
worker wi receives Sr

i , it can perform row clustering with
sequential updates for its rows Ri among the subset of row
clusters Sr

i . For example, assume thatSr
i is f1; 3; 6g, wi will

perform row clustering for its rows whose current cluster
assignments are in Sr

i , and allow these rows to change their

Fig. 2. Compare convergence speed and quality between concurrent
updates and sequential updates.

Fig. 3. Compare convergence speed and quality between concurrent
updates and sequential updates.

TABLE 2
Clustering Results of FNMTF Measured by

Accuracy and NMI

Data sets Metrics Concurrent Sequential

Coil20 Accuracy 0.685 0.721
NMI 0.573 0.612

NG20 Accuracy 0.475 0.485
NMI 0.481 0.490

TABLE 3
Clustering Results of ITCC Measured by Accuracy

and NMI

Data sets Metrics Concurrent Sequential

Coil20 Accuracy 0.681 0.696
NMI 0.564 0.574

NG20 Accuracy 0.478 0.483
NMI 0.489 0.495
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cluster assignments among row clusters 1, 3, and 6. Sincewi

updates only a non-overlapping subset of Scc, the sequential
updates on worker wi will never affect the updates on other
workers. The subsets ofScc and cluster indicators updated by
each worker will be combined and synchronized over itera-
tions. Here we have illustrated how to perform row cluster-
ing. Column clustering can be done in a similar way.

An example for the dividing clusters approach is
shown in Fig. 4. There are three workers in the distributed
environment. Each worker holds a subset of rows Ri and
a subset of columns Ci, and performs sequential updates
on a non-overlapping subset of row (or column) clusters
in each iteration. The mapping between workers and
cluster subsets changes over iterations. Row and column
clustering iterations are performed alternatively until
convergence.

The following lemma and theorem guarantee the conver-
gence properties of AMCC algorithms parallelized by the
dividing clusters approach.

Lemma 2. For alternate minimization based co-clustering algo-
rithms, performing sequential updates for its row (or column)
clustering iteration on any subset of row (or column) clusters
monotonically decreases the objective function given by Eq. (1).

Proof. On any given subset of row clusters, performing row
clustering for a given row u by Eq. (2) in Step 1 will still
not increase the approximation due to u and rðuÞ, i.e.,
Crðu; rðuÞÞ. Since the overall approximation error
CðZ; ~ZÞ in Eq. (1) is the sum over the approximation
errors due to each row and its assignment, CðZ; ~ZÞ will
not be increased. In addition, while keeping the co-clus-
tering (r, g) Þxed, performing the cluster information
update by Eq. (3) in Step 2 will never increase CðZ; ~ZÞ.
Therefore, performing row clustering with sequential
updates on any subset of row clusters monotonically
decreases the objective function given by Eq. (1). For the
column clustering case, the proof is similar and is omit-
ted for brevity. tu

Based on Lemma 2, we can easily derive the following
theorem.

Theorem 3. Dividing clusters approach maintains the conver-
gence properties of alternate minimization based co-clustering
algorithms.

Discussion.Since each worker performs row (or column)
clustering only on a subset of clusters in each iteration,
sequential updates for row (or column) clustering should be
executed in a series of iterations before switching to the
other side of clustering. Intuitively, to ensure the subset of
rows (or columns) of the input data matrix held on each
worker has sufÞcient opportunity to move to any row (or
column) cluster, the number of such iterations should not
be less than the number of non-overlapping subsets of clus-
ters. We will further discuss the setting for this number in
Section 5.3.

3.2 Batching Points Approach

The dividing clusters approach eliminates the dependency
on the cluster information for each worker and enables co-
clustering with sequential updates in a parallel and distrib-
uted manner. However, it assumes that the number of
workers is less than the number of clusters. Such assump-
tion might restrict the scalability of this approach. For exam-
ple, when the number of workers is larger than the number
of clusters, this approach cannot utilize the extra workers to
perform data clustering. Therefore, by relaxing the stringent
constraint of sequential updates, we introduce batch updates
for AMCC algorithms. The difference between batch and
sequential updates is that batch updates perform the cluster
information update after a batch of rows (or columns) have
updated their cluster assignments, rather than after each
change in cluster assignments. The following lemma shows
that batch updates maintain the convergence properties of
AMCC algorithms.

Lemma 4. Alternate minimization based co-clustering algo-
rithms with batch updates monotonically decrease the objective
function given by Eq. (1).

Proof. The proof is similar to that of Theorem 1 and is omit-
ted for brevity. tu

Obviously, sequential or concurrent updates are the
extreme case of batch updates. If the number of rows (or col-
umns) in a batch is one, it is equivalent to sequential
updates; if the number of rows (or columns) is the number
of input rows (or columns), it is equivalent to concurrent
updates. Batch updates provide a useful knob for tuning the
update frequency for AMCC algorithms.

Compared to concurrent updates, batch updates
update the cluster information more frequently, which
implies the advantages of sequential updates could be
preserved. In addition, if the number of rows (or columns)
in a batch is small and Scc can be updated incrementally,
we can still leverage incremental computation to achieve
computational efÞciency. SpeciÞcally, after processing a
batch of rows (or columns) concurrently, Scc could be
incrementally updated according to the re-assignments in
this batch. Therefore, the computational overhead of fre-
quent updates of Scc could be reduced.

We propose a batching points approach to parallel batch
updates. The details of this approach are as follows.
Suppose each worker wi holds a subset of rows Ri and a
subset of columns Ci. When performing row clustering,
we randomly divide Ri into p non-overlapping subsets

Fig. 4. Flow of dividing clusters approach.
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R1
i ; R

2
i ; . . . ; R

p
i . We refer to Rj

i as a batch. Each worker pro-
cesses only one of its batches with concurrent updates in
each iteration. A synchronization process for the cluster
information update is initiated at the end of each iteration.
Such iteration continues until all batches have been proc-
essed, then it switches to column clustering which is per-
formed in a similar way. During the synchronization
process, each worker computes the statistics of co-clusters
on Ri (or Ci). We refer to such statistics obtained by each
worker as one sliceof Scc. All of the slices will be combined
to obtain a new Scc used for the next iteration.

Fig. 5 presents an example for the batching points
approach. There are three workers in the distributed envi-
ronment. Each worker holds a subset of rows Ri and a sub-
set of columns Ci, and further divides Ri and Ci into two
batches respectively. For a row clustering iteration, each
worker selects one of its row batches to perform co-cluster-
ing with concurrent updates. The row clustering iteration
continues two times, then the column clustering iteration
begins. Such row and column clustering iterations are per-
formed until convergence.

The following theorem guarantees the convergence prop-
erties of AMCC algorithms parallelized by the batching
points approach, which can be easily derived by Lemma 4.

Theorem 5. Batching points approach maintains the convergence
properties of alternate minimization based co-clustering
algorithms.

Discussion.The potential performance gain of the batch-
ing points approach is not free, since performing batch
updates requires more synchronization than concurrent
updates. In other words, there is a trade-off between com-
munication overhead and computational efÞciency in this
approach. To Þnd the optimal number of batches numbatch

(numbatch 	 1) that offers the best trade-off, we need to
quantify both performance gain and performance overhead
for the batching points approach. We deÞne one-pass process-
ing as follows. All rows and columns of the input data
matrix are processed by a given co-clustering algorithm in
one pass.

SpeciÞcally, for concurrent updates, one-pass processing
consists of a row clustering iteration and a column cluster-
ing iteration. For batch updates, it consists of numbatch row
clustering iterations and numbatch column clustering itera-
tions. Suppose tbat and tcon are the running time of one-pass

processing with batch updates and concurrent updates
respectively. Dcostbat and Dcostcon are the corresponding
decreases of the objective function respectively. We con-
sider the ratio of Dcostbat to Dcostcon as the performance gain
of batch updates, and consider the ratio of tbat to tcon as its
performance overhead. Typically, we expect the perfor-
mance gain of batch updates should be less than its perfor-
mance overhead, and thus numbatch should satisfy the
following inequality:

tbat
tcon
¼ tcomp þ 2 � numbatch � tsync

tcomp þ 2 � tsync � Dcostbat
Dcostcon

; (14)

where tcomp is the computational time for one-pass process-
ing, and tsync is the time consumption of synchronization
among workers for one iteration. Obviously, both the per-
formance gain and the performance overhead are functions
of numbatch and they are speciÞc to the data set and the
experimental environment. In practice, it is not realistic to
try all possible numbers to Þnd the optimal number of
batches which can maximize the performance (i.e., maxi-
mize the ratio of performance gain to performance over-
head). In Section 5.3, we will provide a practical method to
determine this number.

4 CO-CLUSTERD FRAMEWORK

In this section, we Þrst show the design and implementation
of our Co-ClusterD framework for alternate minimization
co-clustering algorithms with sequential updates. Then we
give the API sets that the framework provides. At last, we
describe the fault tolerance and load balance mechanisms
adopted by Co-ClusterD.

4.1 Design and Implementation

Based on the proposed approaches for parallelizing sequen-
tial updates in the previous section, we design and imple-
ment Co-ClusterD, a distributed framework for AMCC
algorithms with sequential updates. The architecture of the
Co-ClusterD framework is shown in Fig. 6.

Co-ClusterD consists of a number of basic workers and a
leading worker. Each basic worker independently performs
row and column clustering by its updater component. As
shown in Fig. 7, it maintains Þve key-value pair tables in its
memory to store the following variables: a non-overlapping
subset of rows of the input data matrix Ri, a non-overlap-
ping subset of columns of the input data matrix Ci, row-
cluster indicators of the input data matrix Ir, column-cluster

Fig. 5. Flow of batching points approach.

Fig. 6. The architecture of the co-clusterd framework.
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indicators of the input data matrix Ic, and the statistics of co-
clusters Scc. SpeciÞcally, the key Þeld of the table for storing
Ri (or Ci) is the row (or column) identiÞer, and the value
Þeld is the corresponding elements; the key Þeld of the table
for storing Ir (or Ic) is the row (or column) identiÞer, and
the value Þeld is the cluster identiÞer the row (or column)
belongs to; the key Þeld of the table for storing Scc is the co-
cluster identiÞer, and the value Þeld is the statistic of the co-
cluster. Ri and Ci are constant values during the data co-
clustering process. At the beginning of each row (or col-
umn) clustering iteration, each basic worker receives Scc

and Ir (or Ic) from the leading worker, and then performs
row (or column) clustering. The updated subsets of Scc used
in the dividing clusters approach (or the slices of Scc used in
the batching points approach) and cluster indicators are
sent to the leading worker by basic workers over each clus-
tering iteration.

In Co-ClusterD, the leading worker plays a coordination
role during the data co-clustering process. It uses its divider
and combiner components to perform dividing clusters,
and combining non-overlapping subsets of Scc or slices of
Scc. In addition, it is also responsible for synchronizing clus-
ter assignments and the cluster information among workers.
In particular, after the leading work receives the subsets (or
slices) of Scc and cluster indicators from all the workers
over each clustering iteration, it reconstructs Scc and Ir (or
Ic), and then broadcasts them to the basic workers.

For a given co-clustering job, Co-ClusterD proceeds in
two stages: cluster information initialization and data co-
clustering. In the cluster infor mation initialization stage,
assuming there are w workers in the distributed environ-
ment, Co-ClusterD Þrst partitions the input data matrix
into w row and w column subsets. Next, each worker
loads one row subset, one column subset, and randomly
initializes the cluster assignments for the rows and col-
umns it holds. Then, each worker calculates its slice of Scc

and sends it to the leading worker. Finally, the leading
worker combines all slices of Scc and thus the initial Scc is
obtained. In the data co-clustering stage, Co-ClusterD
works on the co-clustering a lgorithm implemented by
users. The algorithm can be easily implemented by over-
riding a number of APIs provided by Co-ClusterD (see
Section 4.2 for details). It alternatively performs row and
column clustering until the number of iterations exceeds
a user-deÞned threshold. In particular, for the dividing
clusters approach, users can specify the number of itera-
tions repeated for row (or column) clustering before
switching to the other side of clustering. For the batching

points approach, users can specify the number of row (or
column) batches each work holds.

Co-ClusterD is implemented based on iMapreduce [17],
which is a distributed framework based on Hadoop and has
built-in support for iterative algorithms (see [17] for details).
In fact, Co-ClusterD is independent of the underlying dis-
tributed frameworks. It can be also implemented on other
distributed frameworks (e.g., Spark [18], and MPI). We
choose iMapreduce since it can better support the iterative
processes of co-clustering algorithms.

Notice that, in the Co-ClusterD framework, row and col-
umn subsets held by each worker will not be shufßed and
only the updated cluster information Scc and cluster assign-
ments Ir (or Ic) are synchronized among workers over itera-
tions through the network. Since Scc (k � l matrix, k 
 m
and l
 n), Ir (m � 1 matrix) and Ic (n � 1 matrix) are very
small, the communication overhead of the Co-ClusterD
framework is small.

4.2 API

Co-ClusterD allows users without much knowledge on dis-
tributed computing to write distributed AMCC algorithms.
Users need to implement only a set of well deÞned APIs
provided by Co-ClusterD. In fact, these APIs are callback
functions, which will be automatically invoked by the
framework during the data co-clustering process. The
descriptions of these APIs are as follows.

1) cProto genClusterProto(bRow, pointS,
Ind) : Users specify how to generate the cluster pro-
totype. Recall that the cluster prototype plays the
role of ÒcentroidÓ in row (or column) clustering, and
it can be constructed by the cluster indicators and
the statistics of co-clusters Scc. The parameter bRow
indicates whether row clustering is performed. If
bRow is true, pointS is one row of Scc, and Ind is
the column-cluster indicators of the input data
matrix. Otherwise, pointS is one column of Scc, and
Ind is the row-cluster indicators of the input data
matrix.

2) double disMeasure(point, cProto) : Given a
point and a cluster prototype cProto , users spec-
ify a measure to quantify the distance between them.
point denotes a row or a column of the input data
matrix.

3) Scc updateSInc(bRow, point, preCID,
curCID, Scc, rInd, cInd) : Users specify how
to incrementally update Scc when a point changes
its cluster assignment from previous cluster pre-
CID to current cluster curCID . rInd and cInd
are row-cluster and column-cluster indicators of
the input data matrix respectively.

4) slice updateSliceInc(bRow, point,
preCID, curCID, slice, subInd, Ind) : Users
specify how to incrementally update a slice of Scc

when a point changes its cluster assignment from
previous cluster preCID to current cluster curCID .
If bRow is true, subInd is the row-cluster indicators
of the subset of rows the worker holds, and Ind is
the column-cluster indicators of the input data
matrix. Otherwise, subInd is the column-cluster

Fig. 7. Basic worker.
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performance is not sensitive to the number of batches. For
example, the performance of eight batches is similar to the
performance of 32 batches. Based on these observations, we
can use the following method to Þnd a good candidate for
the number of batches. We Þrst give an initial guess for the
number of batches, which is relatively small (e.g., 4 or 8),
then run the co-clustering algorithm to measure other varia-
bles in Eq. (14). When we get the ratio Dcostbat

Dcostcon
under the ini-

tial guess, we replace this ratio with a higher value (e.g.,
1x�2x the obtained ratio) and consider this new ratio as the
expected gain. Then we can derive a range for numbatch

according to the expected gain and Eq. (14). Typically,
selecting a number around the middle of this range can
achieve good performance.

5.4 Large-Scale Experiments

To validate the scalability of our framework, we also run
experiments on the Amazon EC2 cloud. The data set
ENRON is used for evaluation. The number of row (or col-
umn) clusters is set to 20. Since the scalability of the divid-
ing clusters approach is dependent on the relationship
between the number of workers and the number of clusters,
only the batching points approach is evaluated. The number
of row (or column) batches each worker holds is set to 4.

As shown in Figs. 11a and 12a, the algorithms imple-
mented in DisCo (denoted by ÒDisCoÓ) and the algorithms
implemented in the Co-ClusterD framework obtain similar
speedups. The main reason is that the algorithms imple-
mented in the Co-ClusterD framework do not shufße the
row and column subsets held by workers and only synchro-
nize the updated cluster information Scc and cluster

assignmentsIr (or Ic) over clustering iterations. We can also
observe that the speedup obtained by Co-ClusterD with
concurrent updates (denoted by ÒConcurrentÓ) is a little bet-
ter than Co-ClusterD using the batching points approach
(denoted by ÒBatching PointsÓ). The reason lies in that con-
current updates performs less cluster information updates
than the batching points approach and thus results in less
synchronization overhead.

In Figs. 11b and 12b, we can observe that, as the num-
ber of workers increases, the running time of the algo-
rithms implemented in DisCo and Co-ClusterD is
signiÞcantly reduced. Notice that, since the bases of com-
puting speedups are different, a better speedup does not
necessarily lead to a shorter running time. As shown in
Figs. 11b and 12b, co-clustering algorithms parallelized by
the batching points approach converge almost two times
faster than their concurrent counterparts implemented in
Co-ClusterD.

We also evaluate how the co-clustering algorithms
implemented in our Co-ClusterD framework scale with
increasing input size by adjusting input size to keep the
amount of computation per worker Þxed with increasing
the number of workers. For this experiment, the ideal scal-
ing has constant running time as input size increases with
the number of workers. As shown in Figs. 13b and 13b, the
achieved scaling is within 20 percent of the ideal number,
which is acceptable.

6 RELATED WORK

In this section, we review the work related to data co-clus-
tering, and large scale data clustering.

Fig. 11. Speedup and running time comparisons. Fig. 12. Speedup and running time comparisons.
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6.1 Data Co-Clustering

There is a large body of work on algorithms for co-cluster-
ing. Dhillon [1] formulate co-clustering problem as a
graph partition problem and pr opose a spectral co-cluster-
ing algorithm that uses eigenvectors to co-cluster input
data matrix. Dhillon et al. [11] explore the relationships
between nonnegative matrix factorization (NMF) [20] and
k-means clustering, and propose to use nonnegative
matrix tri-factorization [21] to co-cluster the input data
matrix. Information theoretic co-clustering proposed in
[11] is an alternate minimization based co-clustering algo-
rithm, which monotonically op timizes the objective func-
tion by intertwining both row and column clustering
iterations at all stages. Many variations of this kind of co-
clustering algorithms have be en proposed by using differ-
ent optimization criteria such as sum-squared distance
[3], and code length [14]. Based on Bregman divergence, a
more general framework for this kind of algorithms has
proposed in [9]. Our framewo rk can perfectly support
these alternate minimization based co-clustering algo-
rithms with different update strategies and they can be
easily implemented by overriding a a set of APIs provided
by our framework.

6.2 Large Scale Data Clustering

As huge data sets become prevalent, improving the scalabil-
ity of clustering algorithms has drawn more and more atten-
tion. Many scalable clustering algorithms are proposed
recently. Dave et al. [22] propose a scheme of implementing
k-means with concurrent updates on MicrosoftÕs Windows
Azure cloud. Ene et al. [23] design a method of implementing

k-center and k-median on Mapreduce. These studies are dif-
ferent from ours as they are devoted to scaling up one-sided
clustering algorithms. In order to minimize the I/O cost and
the network cost among processing nodes, Cordeiro et al.
[24] propose the best of both worlds (BoW) method for data
clustering with MapReduce. This method can automatically
spot the bottleneck and choose a good strategy. Since the
BoW method can treat as a plug-in tool for most of the
clustering algorithms, it is orthogonal to our work.

Folino et al. [25] propose a parallelized efÞcient solution to
the high-order co-clustering problem (i.e., the problem of
simultaneously clustering heterogeneous types of domain)
[26]. George and Merugu [27] design a parallel version of the
weighted Bregman co-clustering algorithm [9] and use it to
build an efÞcient real-time collaborative Þltering framework.
Deodhar et al. [28] develop a parallelized implementation of
the simultaneous co-clustering and learning algorithm [29]
based on Mapreduce. Papadimitriou and Sun [19] propose
the distributed co-clustering (DisCo) framework, under
which various co-clustering algorithms can be implemented.
Using barycenter heuristic [30], Nisar et al. [31] propose a
high performance parallel for data co-clustering. Kwon and
Cho [32] parallelize all the co-clustering algorithms in the
Bregman co-clustering framework [9] using message passing
interface (MPI). Narang et al. [33], [34] present a novel hierar-
chical design for soft real-time distributed co-clustering
based collaborative Þltering algorithm. However, while
these studies focus on parallelizing co-clustering with
concurrent updates, our work is devoted to parallelizing co-
clustering with sequential updates.

7 CONCLUSIONS

In this paper, we introduce sequential updates for alternate
minimization based co-clustering algorithms and propose
dividing clusters and batching points approaches to paral-
lelize AMCC algorithms with sequential updates. We prove
both of these two approaches maintain the convergence
properties of AMCC algorithms. Based on these two
approaches, we design and implement a distributed frame-
work referred to as Co-ClusterD, which supports efÞcient
implementations of AMCC algorithms with sequential
updates. Empirical results show that AMCC algorithms
implemented in Co-ClusterD can achieve a much faster con-
vergence and often obtain better results than their tradi-
tional concurrent counterparts.
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