CURSOR: Configuration Update Synthesis Using Order Rules

Zibin Chen and Lixin Gao

University of Massachusetts, Amherst

May 19, 2023
Network Configurations

- Network operators configure each router separately.
Network Configurations

- Network operators configure each router separately.
Configuration Update Scenario

Los Angeles

New York

Route reflector to client session

Boston

CURSOR: Configuration Update Synthesis Using Order Rules
Updates Cannot be Applied at the Same Time

Fully meshed iBGP

iBGP with Route Reflection

Configuration updates:

1. \(NY_1 \rightarrow NY_2 \) disconnect BGP session.
2. \(NY_3 \rightarrow NY_1 \) change to route-reflector-to-client session.
3. \(NY_3 \rightarrow NY_2 \) change to route-reflector-to-client session.
Order of Applying Updates Matters

Initial State

Intermediate State

Final State

NY_2 does not receive routes learned by NY_1

Applied updates:

① : $NY_1 \rightarrow NY_2$ disconnect BGP session.

② : $NY_3 \rightarrow NY_1$ change to route-reflector-to-client session.

③ : $NY_3 \rightarrow NY_2$ change to route-reflector-to-client session.
Challenge

- Determine an order of applying updates

 - Enumerating order space
 - Configuration updates can involve hundreds of routers changing their configurations
 - Doesn’t scale: n updates have $n!$ possible orders of applying them
Related Work

- **Data Plane Verification**
 - HSA (NSDI 12)
 - Delta-Net (NSDI 17)
 - Aquila (SIGCOMM 21)

- **Control Plane Verification**
 - Plankton (NSDI 20)
 - Tiramisu (NSDI 20)

- **Configuration Update Synthesis**
 - Snowcap (SIGCOMM 21)
Key Idea: Symbolic Execution

- State encodings: \((u_1, u_2, u_3)\)
Symbolic Execution for OSPF

The diagram illustrates the OSPF (Open Shortest Path First) routing protocol. The network consists of routers with different costs associated with their connections.

- Router R_1 has a cost of 10.
- Router R_2 has a cost of 5.
- The cost from d to R_1 is 8.
- The cost from R_1 to R_2 is 5.
- The cost from d to R_2 is 5.

The diagram also shows conditional costs:

$$\begin{cases} 8, & \text{if } u_1 \neq 1 \\ 25, & \text{if } u_1 = 1 \end{cases}$$
Symbolic Execution for OSPF

\[
\begin{align*}
\text{cost} = 8 & \quad \text{if } u_1 \\
\text{cost} = 10 & \quad \text{if } \overline{u_1}
\end{align*}
\]
Symbolic Execution for BGP
Symbolic Execution for BGP

[Diagram showing network nodes and edges labeled with u_1 and d]
Symbolic Execution for BGP

\[
\begin{cases}
 d: \text{via } NY_1 \text{ if } u_1 \\
 d: \text{null} \text{ if } u_1
\end{cases}
\]
Symbolic Routing Table

- NY_1 receives route to d via eBGP.
- Symbolic routing table for NY_2 is

$$\begin{cases}
\text{via } NY_1 & \text{if } \overline{u_1} \lor (u_2 \land u_3) \\
\text{null} & \text{if } (u_1 \land \overline{u_2}) \lor (u_1 \land \overline{u_3})
\end{cases}$$
Constructing Update Orders

- Symbolic routing table for NY_2

 $\begin{align*}
 \text{via } NY_1 & \quad \text{if } \overline{u_1} \lor (u_2 \land u_3) \\
 \text{null} & \quad \text{if } (u_1 \land \overline{u_2}) \lor (u_1 \land \overline{u_3})
 \end{align*}$

- Ensure reachability of NY_2
 - Make $(u_1 \land \overline{u_2}) \lor (u_1 \land \overline{u_3}) = \text{false}$

 \[
 u_1 \land \overline{u_2} = \text{false}, \quad \text{and} \quad u_1 \land \overline{u_3} = \text{false}
 \]

- Deriving rules

 - $u_1 \land \overline{u_2} \implies (u_1, u_2) \neq (1, 0) \implies u_2 \text{ before } u_1$

 - $u_1 \land \overline{u_3} \implies (u_1, u_3) \neq (1, 0) \implies u_3 \text{ before } u_1$

- Order: $u_2 \rightarrow u_3 \rightarrow u_1$
Evaluation

Experiment Setting:

- Real-world topologies from Topology-Zoo & Synthesized topologies
- Configuration updates:
 - FM2RR/RR2FM: fully-meshed iBGP \Leftrightarrow iBGP with route reflection
 - Merge/Split: Merge two networks/Split a network into two
- Properties:
 - Reachability/Waypoint
Time Efficiency
Scalability
Conclusion

- We propose CURSOR, a configuration update synthesis.
- CURSOR synthesizes configuration order by symbolically determining the routes.
- CURSOR can reduce the synthesis time by 1-2 orders of magnitude from the state-of-the-art approach.
Thanks!

University of Massachusetts Amherst