
CURSOR: Configuration Update Synthesis Using
Order Rules

Zibin Chen, Lixin Gao
Department of Electrical and Computer Engineering, University of Massachusetts, Amherst

{zibinchen, lgao}@engin.umass.edu

Abstract—Network configuration updates are frequent nowa-
days to adapt to the rapid evolution of networks. To ensure
the safety of the configuration update, network verification can
be used to verify that network properties hold for the new
configuration. However, configuration updates typically involve
multiple routers changing their configurations. Changes on these
routers cannot be applied simultaneously. This leads to inter-
mediate configurations, which might violate network properties
such as reachability. Configuration updates synthesis aims to
find an order of applying changes on routers such that network
properties hold for all intermediate configurations.

Existing approaches synthesize a safe update order by travers-
ing the update order space, which is time-consuming and does
not scale to a large number of configuration updates. This paper
proposes CURSOR, a configuration update synthesis that extracts
rules that update orders should follow. We implement CURSOR
and evaluate its performance with real-world configuration
update scenarios. The experimental results show that we can
accelerate the synthesis by an order of magnitude on large-scale
configuration updates.

I. INTRODUCTION

Network configurations are updated frequently due to the
rapid development of the network as well as the need to en-
hance network security. The process of updating configurations
to networks is known as the configuration update process.
Configuration updates to backbone networks of large ISPs and
content providers occur frequently. Google has revealed that its
network configuration is constantly changing to accommodate
the increasing traffic demands and to deploy new features [16].
Facebook changes its network configurations as frequently as
weekly [31]. To guarantee the safety of the network, operators
have to ensure that certain network properties (such as pair-
wise reachability and loop-free) hold at all times.

Control plane network verifications [1], [4], [14] are pro-
posed to ensure the safety of the network for a particu-
lar configuration. Network operators can use control plane
verification tools to check network properties on the new
configuration and ensure the new configuration does not cause
outages or security issues.

However, configuration updates often involve multiple
routers updating their configurations. Changes to different
routers cannot be applied simultaneously. This leads to inter-
mediate update states where only a subset of routers changed
their configurations. These intermediate states are not guaran-
teed to be safe from outages or security issues even though
the new configuration is verified and proven safe. As a result,
some orders of applying updates might lead to temporarily

loss of connectivity or security issues. Even several minutes of
violations of network properties can be harmful and incur sub-
stantial economic loss [21]. In addition to verifying network
properties on the new configuration, network operators have to
decide an order of applying changes such that all intermediate
configurations satisfy the network properties.

Configuration update synthesis automatically discovers an
order of applying updates such that all intermediate update
states satisfy the network properties. One obvious way to
derive a safe order of applying changes to routers is to
enumerate all possible orders and return the one that satisfies
the network properties at all times (i.e., all intermediate update
states). The enumeration-based approach works for configura-
tion updates with a small number of changes. However, real-
world configuration updates might involve a large number of
changes. For example, changing from a fully meshed iBGP
architecture to iBGP with route reflection for a network with
hundreds of routers can involve more than 10,000 changes. As
a result, the enumeration-based approach can lead to enormous
search space and does not scale to large number of updates.

Existing work such as Snowcap [27] proposed counter-
example guided search [25], [37] to reduce the search space.
While it can speed up the configuration update synthesis, even
traversing partial update order space can be time-consuming.

This paper proposes CURSOR, a synthesis scheme for
configuration updates. The key idea of CURSOR is to directly
derive rules for update orders instead of trying out update
orders. In this paper, we express the best routes in terms of
update states. As a result, it is possible to describe network
properties with a boolean expression of update states, from
which CURSOR derives rules for update orders. The contri-
butions of this paper are summarized as follows.

• We express network properties with a boolean expression
of update states. This is done by deriving the best routes
in terms of update states. Since network properties are
typically expressed in terms of the best routes, we can
find the equivalent boolean expression in terms of update
states.

• We construct the rules for update orders by analyzing the
boolean expression of update states. We can come up with
rules for update orders to avoid entering update states that
violate network properties.

• We synthesize a safe order of applying updates based
on the rules. We propose heuristic algorithms to perform

level-based synthesis by allocating updates to different
levels based on the derived rules.

• We implement and evaluate CURSOR under large-scale
real-world configuration update scenarios. The experi-
mental results show that CURSOR can reduce the syn-
thesis time by one order of magnitude compared to the
state-of-art approach.

The rest of the paper is organized as follows. Section II
shows that improper order of applying updates can lead to vio-
lations of the network properties. Section III gives an overview
of CURSOR with a running example. Section IV describes
how we express the network properties with update states. We
use the expression of network properties and construct rules
for update orders in Section V. Section VI introduces level-
based synthesis, where we derive an update order such that
network properties hold at all times during the configuration
update. We evaluate CURSOR in Section VII and discuss the
related work in Section VIII. We conclude in Section IX.

II. MOTIVATION

In this section, we motivate our work by showing a config-
uration update example where applying changes in a specific
order can lead to violations of network properties. Then,
we show that deriving a valid sequence of updates through
enumerating the order space (i.e., all possible order of applying
updates) is not feasible.

We first show that network properties can be violated during
the configuration update process. Consider the following real-
world reconfiguration to the iBGP routing system: transiting
from a fully meshed iBGP to iBGP with route reflection.
Fully meshed iBGP is the simplest iBGP configuration used to
redistribute routes learned from eBGP sessions. Fully meshed
iBGP requires each pair of BGP routers to establish iBGP
sessions. However, as the network grows, the number of iBGP
sessions grows. Networks with a large number of BGP routers
consider iBGP with route reflection [6] to reduce the number
of iBGP sessions. BGP routers form a hierarchical structure
with route-reflector-to-client sessions. Figure 1 illustrates the
reconfiguration of the iBGP routing system where the blue
arrow indicates routes to external prefix d learned from eBGP
sessions. Solid black edges with arrows represent a route-
reflector-to-client session where arrows point to the client.

Let us focus on the reachability of prefix d of all routers.
Suppose we apply the updates with the order as they are listed
(i.e., u1→ u2→ u3→ u4→ u5). R2 no longer receives the route
when u1 is applied first (see Figure 1 (d)) since BGP routers do
not announce routes learned from a non-client iBGP neighbor
to another.

One simple yet inefficient way to avoid the violation of
network properties during the reconfiguration is to traverse the
order space (i.e., all possible orders) and verify the network
properties at all intermediate update states. An order is con-
sidered safe if the network properties hold at all intermediate
update states. However, the number of possible ordering for n
updates is n!. Given the scalability challenge on control plane

(a) Initial configuration. (b) Target configuration.

(c) Configuration updates. (d) R2 is not able to reach d
when u1 is applied first.

Fig. 1: iBGP configuration migrating from fully meshed iBGP
to route reflection.

verification, traversing the order space can be even more time-
consuming and is not feasible when there is a large number
of updates.

III. OVERVIEW OF CURSOR

In this section, we give an overview of CURSOR: a rule-
based configuration update synthesis scheme. The key idea
is to generate rules for update orders based on the network
properties.

CURSOR synthesizes the update order by deriving rules
for update orders. In order to determine such rules, CURSOR
represents the network properties with a boolean expression
of update states. Then, rules for update orders can be derived
from the boolean expression. After obtaining the rules, we can
synthesize an order of applying updates.

Now, we show how to express network properties with
update states. Consider the example in Figure 1. We aim
to derive a boolean expression of update states where the
reachability is violated. We encode update states with a set
of boolean variables vi (1≤ i≤ n), where vi indicates that the
ith update (i.e., ui) is applied, and vi indicates that update ui
is not applied.

Let us first focus on R2 and consider that R2 cannot reach
d. That is, R2 does not receive any routes from R1 and R3 to
d. Consider R2 does not receive a route from R1. This means
R1’s best route is received from a non-client peer. That is, R3
is a non-client peer of R1, which corresponds to the boolean
expression v4. Consider the case that R2 does not receive a
route from R3. The iBGP session with R3 is disconnected,
which can be expressed as a boolean expression v1. Then the
violation of reachability of R2 can be expressed as the boolean
expression v1 ∧ v4. Similarly, we derive boolean expressions
for other routers. CURSOR expresses the network properties

with the best routes and then converts them into boolean
expressions of update states. Section IV shows how to express
network properties with a boolean expression of update states.

We then construct the rules from the boolean expres-
sions of update states. The rules ensure that the network
properties hold for all intermediate states. We consider the
opposite (i.e., which intermediate states violate the network
properties) and use rules to avoid entering those update
states. Intermediate update states for an update order uπ(1)→
·· · → uπ(n) are (vπ(1),vπ(2), . . . ,vπ(n)),(vπ(1),vπ(2), . . . ,vπ(n)),
. . . , (vπ(1),vπ(2), . . . ,vπ(n−1),vπ(n)). The rules have to guarantee
that the boolean expression holds false for all intermediate up-
date states listed above. We transform the boolean expression
into Disjunctive Normal Form (DNF) and solve the encodings
of the update states that violate the network properties. DNF
consists of disjunctive clauses connected with and. Network
properties are violated if any clause is true. Each clause is
a conjunction of either positive literals (e.g., v1) or negative
literals (e.g., v4). The key idea is to ensure that there is at least
one item in the clause is false by setting variables in negative
literals to true. As a result, we apply updates in negative literals
before updates in positive literals so that the clause is false
for all intermediate states. For example, the rule for the clause
v1 ∧ v4 is that u4 has to be applied before u1. Similarly, we
can derive rules from other clauses. In Section V, we show the
derivation of rules from boolean expressions of update states
in detail.

We synthesize an order that satisfies all of the derived rules.
In Section VI, we propose a heuristic algorithm to synthesize
the update order automatically.

IV. EXPRESSING NETWORK PROPERTIES WITH UPDATE
STATES

This section shows how we express network properties with
update states. Network properties are typically expressed with
best routes. As a result, we first express the best routes with
update states. In this section, we derive the best routes from
update states in Section IV-A and Section IV-B. After that, we
combine the best routes and express network properties with
update states in Section IV-C.

A. Derive IGP Best Routes from Update States

We first derive the best routes for Internal Gateway Protocol
(IGP). IGP, like OSPF [23] and IS-IS [30], uses shortest-path-
based routing. That is, given the update state, the best route
of each router is the route with the lowest cost. We can use
the Bellman-Ford algorithm to calculate the best routes under
given update states. A naive approach is to run the algorithm
for each update state and get the best routes. However, one
needs to enumerate 2n update states for a configuration update
with n updates.

The above approach assumes that the best route depends on
every update. However, this is not necessarily true. The best
route of a router typically depends on only a few updates. We
show an example in which the best routes depend on a subset
of updates in Figure 2. In Figure 2, we have two updates: u1

Fig. 2: R2’s smallest cost to R1 depends only on u2 not on u1.

changes the IGP link weight between R1 and R3 from 20 to
10 and u2 changes the IGP link weight between R1 and R2
from 5 to 1. Note that the cost of using the direct link to R1
for R2 is at most 5, while using R3 to forward the traffic can
end up with a cost of at least 27. As a result, R2 always uses
the direct link no matter whether update u1 is applied or not.
In this case, R2’s best route to R1 does not depend on u1.

We propose a Bellman-Ford-like algorithm to derive the
best routes under configuration updates such that only updates
affecting the best routes are considered. Like the Bellman-Ford
algorithm, routes are propagated between neighboring routers,
and each router updates its route when a better one is found.
Unlike the Bellman-Ford algorithm, the route for each router
consists of a set of costs1, each of which is quantified by a
set of update states. For example, in Figure 2, the best route
for R2 to R1 can be expressed as {(1 : ∗, true),(5 : ∗, f alse)},
where 1 and 5 are the costs, and ∗, true and ∗, f alse are the
quantified update states. As described above, the best route
does not depend on u1. As a result, we use ∗ to represent
that no matter what value v1 is, the costs are the same. More
generally, we use (c : b1, . . . ,bn) to represent an entry in a
route where c is the cost and b1 to bn are the values of the
corresponding update variables.

We iteratively update routes on every router until conver-
gence. Initially, routes are set to (0 : ∗, . . . ,∗) if the router
originates the prefix and (∞ : ∗, . . . ,∗) otherwise. The update
process on each router consists of two iterative steps: Propa-
gateRoute and MergeRoute.

1) PropagateRoute: Ri propagates its route through the link
between Ri and R j;

2) MergeRoute: R j merges the propagated routes to its route.

We keep doing PropagateRoute and MergeRoute for all
pairs of neighboring routers until no router updates its route
in one iteration. We describe PropagateRoute and MergeRoute
in detail in the following.

PropagateRoute: The route of a router is propagated to
a neighbor through a link with potential update. The update
on the link can change the weight, resulting in different link
weights under different update states. As a result, proper link
weight should be added to the proper cost when a route is
propagated to neighbors. We consider the following two cases.

Case 1: The link does not have an update: The link
weight keeps the same under all update states. Therefore, we

1For simplicity of exposition, we describe the algorithm for one specific
destination. Different destinations are calculated independently and have
independent best routes.

Algorithm 1 PropagateRoute.

1: procedure PROPAGATEROUTE(r, l)
2: Initialize empty route rprop ▷ rprop is the

propagated route.
3: for entry of (c : s) in r do
4: if link has update ui then
5: Suppose weight is wnew when ui = 1
6: Suppose weight is wold when ui = 0
7: b1, . . . ,bi, . . . ,bn← s
8: if bi = 1 then
9: Add entry (c+wnew : s|vi) to rprop

10: else if bi = 0 then
11: Add entry (c+wold : s|vi) to rprop
12: else if bi = ∗ then
13: Add entry (c+wnew : s|vi) to rprop
14: Add entry (c+wold : s|vi) to rprop
15: end if
16: else
17: w← link weight of l
18: Add entry (c+w : s) to rprop
19: end if
20: end for
21: return rprop
22: end procedure

go over all entries in the route and add the link weight to the
cost. We propagate the route after adding the link weight.

Case 2: The link has an update, ui: Suppose update ui
changes the link weight from wold to wnew. We add wold or
wnew to costs according to the quantified update state. We go
over each entry (c : b1, . . . ,bi, . . . ,bn) in the route and consider
the following three cases of bi.

• bi = true: We add wnew to c.
• bi = f alse: We add wold to c.
• bi = ∗: We generate two entries for vi and vi and add

wnew and wold , respectively. More specifically, we split
the entry into two: (c+wnew : b1, . . . , true, . . . ,bn) and (c+
wold : b1, . . . , f alse, . . . ,bn).

We propose PROPAGATEROUTE(r, l), which propagates
route r through link l. PROPAGATEROUTE(r, l) takes a route
r and a link l as input and returns a new route rprop to be
propagated to the neighbor. We show PROPAGATEROUTE(r, l)
in Algorithm 1.

MergeRoutes: The propagated route updates the neighbor’s
route (target route). Both the propagated and the target routes
have multiple entries. In order to merge these two routes, we
consider whether the propagated route brings a better route to
the destination (i.e., a route with a smaller cost). We merge
the propagated route into the target route only when a smaller
cost in the propagated route is found. We do merge on each
pair of entries.

Let us focus on one entry from the propagated route (cp : sp)
and merge it into an entry in the target route (ct : st). One
obvious thing to do is to compare the cost: merge only happens

Algorithm 2 MergeRoute

1: procedure MERGEROUTE(rp,rt)
2: if min{cp|(cp : sp) ∈ rp} ≥max{ct |(ct : st) ∈ rt} then
3: Absorb merge
4: end if
5: for each (ct : st) ∈ rt do
6: for each (cp : sp) ∈ rp do
7: if ∃ue ∈ sp∧ st ,sp[ue] ̸= st [ue] then
8: continue
9: end if

10: if cp < ct then
11: if sp = st then ▷ Case 1
12: ct ← cp
13: else ▷ Case 2
14: sint ← st ∩ sc ▷ See Equation (1)
15: Remove entry (ct : st) from rt .
16: Add entry (cp : sint) to rt .
17: Add entry (ct : st\sint) to rt .
18: end if
19: end if
20: end for
21: end for
22: end procedure

when cp < ct . We skip this pair of entries if cp ≥ ct .
We then consider whether st and sp overlap. That is, whether

two entries cover any common update states. sp and st are
considered not covering common update states if there exists
an update ui such that
• sp[ui] ̸= ∗ and st [ui] ̸= ∗ and;
• sp[ui] ̸= st [ui].

If st and sp do not overlap, the propagated route does not
convey shortest path information for any common update states
with the entry in the target route. There is no need to merge
these two pairs of entries.

If st and sp overlap, we update the cost of the overlapped
update states. We consider two cases.

Case 1: sp = st : We update ct to cp.
Case 2: sp ̸= st : In this case, we split st into two parts by

whether the state is covered by sp. One part is the intersection
of st and sp. We denote the intersection update states as
sint . The propagated route brings a better route for sint . As
a result, the cost of sint are updated to cp. We express sint in
Equation (1). The other part is update states other than sint , of
which case we keep the cost ct .

sint = ∀ui,vi =

 ∗ if sp[ui] = ∗ and st [ui] = ∗
st [ui] if st [ui] ̸= ∗
sp[ui] otherwise

(1)

We do this for all pairs of entries in the propagated route and
the target route. MergeRoute merges the propagated route (rp)
to the target route (rt). We summarize MERGEROUTE(rp,rt)
in Algorithm 2. We summarize the iterative process to derive
the IGP best route in Algorithm 3.

Algorithm 3 Derive best route from IGP.

1: Initialize the route for all router as (∞ : ∗, . . . ,∗).
2: Set the route for originated prefix as (0 : ∗, . . . ,∗).
3: while routes updated do
4: for each router Ri do
5: ri← Ri’s route
6: for neighbor R j of Ri do
7: r j← R j’s route
8: l← link between Ri and R j
9: rprop← PROPAGATEROUTE(ri, l)

10: MERGEROUTE(rprop,r j)
11: end for
12: end for
13: end while

B. Derive BGP Best Routes from Update States

Now, we derive the best routes for Border Gateway Protocol
(BGP) [26]. BGP is a policy-based routing protocol. Routers
announce their best routes to neighbors according to the export
policy. Neighbors pick the best route according to the import
policy. In the following, we first derive the BGP best route
for a given update state and then derive the BGP best routes
when considering configuration updates.

1) Best Route for One Update State: A straightforward way
to derive the BGP best routes is to model BGP as a Simple
Path Problem and run the Simple Path Vector Protocol (SPVP)
to calculate the best route [17]. However, deriving the best
route with SPVP can take O(2|V |) iterations where |V | is the
number of BGP routers.

Inspired by BiNode [28], we represent each BGP router
with a constant number of routes. We represent each route as
a node in a directed acyclic graph (referred to as the BiNode
graph) and use directed edges to represent the routing decision
process. Edges in the BiNode graph are determined by the
BGP sessions. To build the BiNode graph, we construct edges
by going over each BGP session in the network.

Case 1: iBGP Peer Session between Ri and R j: We use
dbest to represent the best route learned from iBGP client
and eBGP neighbors. Ri learns route from R j only when R j’s
best route is learned from iBGP clients or eBGP peers, which
is dbest j. As a result, we add a direct edge from dbest j to
besti. Similarly, there is an edge from dbesti to best j. We
show the topology where Ri and R j establish the iBGP peer
session in Figure 3 (a) and the corresponding BiNode graph
in Figure 3 (b).

Case 2: iBGP Client Session from Ri and R j (R j is the
iBGP client): We use dbest to represent the route learned
from iBGP client neighbors and eBGP neighbors. R j is an
iBGP client of Ri, as a result dbesti learns best j from R j. We
have a directed edge from dbest j to dbesti. Ri announces its
best route to R j no matter where the best route is learned
from since R j is a client of Ri. We have an edge from besti
to best j. We show the topology where Ri and R j establish the
iBGP client session (R j as iBGP client) in Figure 4 (a) and

(a) Ri and R j establish iBGP
peer session.

(b) BiNode graph for topology
in a

Fig. 3: iBGP peer session between Ri and R j and the corre-
sponding BiNode.

(a) Ri and R j establish iBGP
Client session.

(b) BiNode graph for topology
in a

Fig. 4: iBGP client session between Ri and R j and the
corresponding BiNode.

the corresponding BiNode graph in Figure 4 (b).
Case 3: eBGP Sessions: eBGP sessions are used to

exchange routes across multiple ASes. We add edges in the
BiNode graph by splitting the best route learned from external
into two parts: routes learned from customer ASes and routes
learned from peer/provider ASes. The detailed construction of
the BiNode graph for eBGP sessions can be found in [28].

2) Best Route under Configuration Update: As we can
see from the above discussion, configuration determines the
edges in the BiNode graph. That is, edges in the BiNode
graph are different under different update states. We introduce
Route Multiplexing Graph (RMG), which captures relation-
ships between edges and update states. RMG is a directed
acyclic graph built atop the BiNode graph. Edges in RMG
are quantified with boolean expressions describing under what
update states the edge exists in the BiNode graph.

To construct the RMG, one needs to know which edges
are constructed when an update is not applied and applied
for each update, respectively. We first consider updates as not
applied, which is the initial configuration. We construct the
BiNode graph for the initial configuration. When constructing
the BiNode graph, we also label any potential updates on
the edge in addition to adding edges for BGP sessions. For
example, when constructing edges for an iBGP peer session
between Ri and R j, we check whether an update exists that
changes this session (modify or remove). If such ui exists, we
label this edge with vi.

Similarly, we consider updates as applied. We build the
BiNode graph for the target configuration and label the edges
with any update that changes the corresponding BGP session.
We build the RMG by merging the BiNode graphs for the
initial and target configurations. We add an edge from node i
to node j if there is an edge from node i to node j either in the
BiNode graph for either the initial or target configuration. We

(a) BiNode for ini-
tial configuration.

(b) BiNode for target
configuration.

(c) RMG when
merging (a) and (b).

Fig. 5: RMG for R1 and R3 in Figure 1

quantify the edge from node i to node j with the corresponding
label in the BiNode graph. We take the or of the labels in two
graphs if the edge exists in both BiNode graphs.

We show the construction of RMG for the topology in
Figure 1 with Figure 5. For simplicity of exposition, we only
show R1, R3 and update u4. We show the BiNode graph for
the initial and target configuration in Figures 5 (a) and 5 (b),
respectively. We merge the edge from dbest3 to dbest1 and
best1 to best3 from Figure 5 (b) to 5 (a) and show the RMG
in Figure 5 (c).

We derive the relationship between the best routes and
update states with RMG. To do so, we represent the route
decision process with a function of updates. Since the edges
are quantified with a boolean expression and considered as ex-
isting conditioning on some update states, we use × operation
between routes learned from neighbors and the update states
to capture this. For example, when besti learns from dbest j,
besti picks the best routes from set {. . . ,vk × dbest j, . . .}.
vk × dbest j returns dbest j when vk = true and a null route
when vk = f alse.

We use a selection function denoted by fsel to capture the
route decision process at each node. The selection function
takes a set of routes as input and assigns an integer value called
ranking to all the routes. The ranking is an integer that reflects
the preference of a route by BGP, which BGP compares a
sequence of attributes in the route to decide. Then, the routes
with the highest ranking are returned. A null route always has
the lowest ranking in fsel and will never be selected whenever
there is a non-null route.

As a result, each node takes the neighbors’ exported route
under a specific set of update states as input and picks the
one with the highest preference. More specifically, suppose
the boolean expression on edge from node j to node i is q j,i,
we express BGP routes with Equation (2).

pi = fsel

({
q j,i×g j,i(p j)|p j ∈ Incoming(pi)

})
(2)

where g j,i denotes the transformation on routes when p j is
announced to Ri. Incoming(pi) represents the set of nodes
that have a directed edge to pi. p j can be any route used to
represent R j (e.g., best j or dbest j).

C. Expressing Network Properties

With best routes expressed with update states, we can
express the network properties with update states. To do so,
CURSOR expresses network properties with the best routes
and then expands the best routes by exploiting the relationships

between the best routes and update states derived in the
previous sections.

Best routes from IGP and BGP work together to determine
the forwarding behavior of packets within a network. For
example, to decide the forwarding path for a destination
outside the network, besti determines which egress point to
use, and ri decides how to forward the packet to that egress
point. As a result, we derive the best route from IGP with
Algorithm 1 and construct RMG to represent the BGP best
route. After obtaining ri and besti, best route of Ri can be
expressed with a function of ri and besti. We represent the
best route of a router with a function of ri and besti.

data f wdi = fr(ri,besti) (3)

where fr represents the function where ri and besti decides
the forwarding path of Ri.

Now we represent network properties with data f wd. In
general, we express the network properties (denoted with φ)
with Equation (4).

φ = f ({data f wdi|Ri}) (4)

where function f describes the constraints on routes (e.g.,
what values attributes should have). Ri represents the routers
in the network. In the following, we show how we convert the
expressions of best routes into boolean expressions of update
states.

1) Network Properties for Internal Destinations: Network
properties for internal destinations are determined by IGP
routes only. As a result, those properties can be expressed
with constraints on ri. For example, the waypoint property for
internal destinations only cares about whether a specific router
is in the forwarding path.

Since we already derived ri in Section IV-A, we know
exactly which update states violate the network properties.
We represent the network property with the union of all
update states that violate the network properties. To get the
update states, we check each entry in ri. For entry ri = (ci,si),
si violates the network property if the forwarding behavior
causes violations to network properties (i.e., ri ̸|= φ 2). We
construct the boolean expression by taking the intersection of
all intermediate states si which ri ̸|= φ .

2) Network Properties for External Destinations: Network
properties for external destinations require BGP to pick the
egress point first. Then, a forwarding path to the destination
can be determined. For such destinations, we only care about
the constraints on forwarding paths within the network. We
first figure out which egress points are used and then express
network properties for each egress point.

To derive the egress points used, we iteratively plug in
Equation (2) until we reach BGP routers with external an-
nouncements. Note that fsel picks BGP routes based on ranking
and update states. We can get a set of boolean expressions,
each of which corresponds to one egress point.

2Note that forwarding path data f wdi can be easily constructed when
running Algorithm 3, and therefore used to check whether ri |= φ

We express the network properties for external destinations
to a set of constraints on the forwarding path to each egress
point. For example, we express the waypoint property that
requires passing a particular router with the set of constraints
stating that the forwarding path to the egress point has to
pass the same router. By doing so, we express the network
properties for external destinations with the boolean expression
of update states by first converting them to the corresponding
properties for internal destinations. Note that the selection of
the egress points is conditioned on specific update states. We
encode the intersection (and) of the constraints of forwarding
behavior (from the corresponding properties for internal desti-
nations) and the boolean expression for the egress point (from
the selection of BGP routes). We take the intersection of the
constraints for all egress points as the network properties are
considered as hold only when the forwarding path to all egress
points satisfies the network properties.

V. CONSTRUCTING RULES FOR UPDATE ORDER

We construct the rule for update orders in this section. We
construct rules from the boolean expression derived from the
previous section.

We want to avoid entering update states in which network
properties are violated. To do so, we first derive what update
states violate the network property. That is, s ̸|= φ . To do so,
we taking the negative of the expression constructed in the
previous section and solve for the update states.

We solve the expression, φ = true, and construct a set of
rules to avoid those update states. We first convert φ into
DNF, which is a disjunction of clauses where each clause is
a conjunction of literals (i.e., update variables). Update states
that making any clause true violates the network property. We
represent one clause in the following form.

vp1∧·· ·∧ vp j ∧ vn1∧·· ·∧ vnk (5)

where vp1, . . . ,vp j are the update variables in positive literals
and vn1, . . . ,vnk are the update variables in negative literals.
Note that at least one literal is positive literal. Otherwise,
the initial configuration would violate the network property.
Similarly, at least one literal is negative literal. Otherwise, the
target configuration would violate the network property.

We consider one clause at a time. Note that update variables
are connected with and in each clause. To avoid the clause
becoming true, at least one item has to be false. Such cases are
either update variables in positive literals are false, or update
variables in negative literals are true.

In the configuration update process, we are finding an order
of applying updates such that new configurations are finally
deployed on all routers. That is, we are finding an order of
updating variables from false to true. Back to Equation (5), the
corresponding literal becomes true when updates in positive
literals are applied and becomes false when updates in negative
literals are applied. As a result, one of the updates in negative
literals should be applied before all updates in positive literals
are applied.

(a) uc belongs to multiple levels
in different rules.

(b) Aligning uc to level-2 and
move S3 to level-3.

Fig. 6: Aligning uc to the same level.

We construct the rule for each clause. Since any clause that
becomes true can cause φ = true, we require all rules to be
satisfied at the same time.

VI. RULE-BASED SYNTHESIS OF UPDATE ORDER

This section synthesis an order of applying updates that
satisfies all the rules. We first generate a set of restricted rules
from the original one, making synthesis easier. If no order
was found from the restricted rules, we propose a heuristic
algorithm to adjust the levels so that a valid rule can be found.

A. Restricting Rules

We restrict the rules by requiring all updates with negative
literal applied before any updates with positive literal. That
is, we apply updates in negative literals first and then apply
updates in positive literals. However, we may have multiple
rules causing conflicts. We propose a level-based synthesis to
synthesize an order of applying updates that satisfies all rules.
We introduce level-based synthesis in the following.

B. Level-based Synthesis

We propose level-based synthesis to synthesize an order of
applying updates when no order is found from the restricted
rules. The key idea is to align updates into levels from the
rules. For example, if the rule requires u1 to apply before u2,
we put u1 into a level that is applied ahead of u2. We assign
an integer value for each update at each rule called “level” in
such a way that
• Updates with higher levels should be applied before

updates with lower levels.
• The order of applying updates at the same level does not

matter.
CURSOR finds a way to assign the level to updates such

that one update is assigned with one level through all rules. If
that is the case, we can apply the updates from the highest to
the lowest level. To start, we assign updates whose variables
are negative literals level-2 and positive literals level-1 for each
rule. Due to conflicts in the restricted rules, some updates can
have both level-1 and level-2.

A variable cannot be in both positive and negative literals
in one rule (otherwise, the corresponding clause in DNF is
always false, and there is no rule for that clause). However, one
variable might appear in multiple rules with both positive and
negative literals. We adjust the level of updates in some rules
to align the levels while keeping the levels assigned following
the principles above.

We align the levels by reassigning levels of updates belong-
ing to multiple levels. CURSOR aligns levels by reassigning
the update to the highest level across all rules. However,
reassigning an update with a higher level could break the
principles mentioned above. For example, suppose update ul
appears in two rules. In the first rule, ul is in level lh and in
the second rule, ul is in ll . Suppose lh > ll . We align ul by
reassigning ul to level lh in the second rule. However, there
might be updates assigned to levels between lh and ll . For
those updates, before aligning, they have a higher level than
ul , but after aligning, they have a lower or same level than ul .
Obviously, the order between these updates and ul is flipped,
which breaks the rule.

CURSOR fixes the rule by “pushing” all updates with a
higher level than ul left with uh−ul levels. More specifically,
we increase the level of any updates with a higher level than ul
by uh−ul . By doing this, CURSOR preserves the original rules
while aligning ul . This can be generalized to multiple rules by
moving each rule separately. We use an example to illustrate
the alignment process. We show a set of restricted rules in
Figure 6 (a), where uc is assigned level-2 in rule 2 but level-1
in rule 1. As mentioned above, we align uc by reassigning uc
with level-2. However, there is a set of updates (S3) in level-2
with a higher level than uc. As a result, we increase the level
of all the updates in S3 by 1 when reassigning uc in rule 2
with level-2.

We keep aligning updates until no update is assigned with
more than one level. We can construct the order by applying
updates from the highest to the lowest level. Within each level,
we can apply updates in any order.

VII. IMPLEMENTATION AND EVALUATION

We implement CURSOR in C++ and evaluate the per-
formance of CURSOR with extensive experiments in this
section. We describe the experiment setting in Section VII-A.
We compare the performance of CURSOR with the state-
of-the-art update synthesis work on real-world configuration
update scenarios in Section VII-B. We show the scalability of
CURSOR in Section VII-C.

A. Experiment Setting

To evaluate the performance of CURSOR, we use a set of
real-world topologies and synthesized topologies of various
sizes. We use 85 real-world topologies from topology-zoo [20]
and synthesize the fully meshed iBGP configuration with
randomly generated IGP link weights. We also synthesize
large-scale networks where the degree of routers follows the
power-law distribution.

We test CURSOR with various network properties and
a set of real-world configuration update scenarios. In this
experiment, we focus on network properties like reachability
and waypoint. We consider the following configuration update
scenarios in the experiments.
• FM2SCRR: A fully meshed iBGP routing system is

reconfigured into a single-clustered iBGP with route
reflection architecture.

• SCRR2FM: An iBGP routing system with single-
clustered route reflection is reconfigured into a fully
meshed iBGP routing system.

• DoubleIGPWeight: All IGP link weights are doubled.
• HalveIGPWeight: All IGP link weights are halved.
• FM2MSRR: A fully meshed iBGP routing system is con-

figured into a multi-clustered iBGP with route reflection
architecture with IGP link cost doubled if a link crosses
multiple clusters.

• Acquisition: Merge two networks into one single network.
• SplitTo2: One network is split into two networks.

We test CURSOR on a server with an 8 Core Intel(R)
Xeon(R) Gold 6148 CPU 2.40GHz and 64GB memory.

B. Evaluating the Efficiency with Real-World Topologies

We evaluate the performance of CURSOR on real-world
configuration update scenarios and compare it with the state-
of-the-art synthesize approach, Snowcap. We synthesize a safe
update order with both CURSOR and Snowcap on Topology
Zoo and when the reachability and waypoint properties are
required. We evaluate CURSOR under the following con-
figuration update scenarios: FM2SCRR, SCRR2FM, Dou-
bleIGPWeight (only waypoint property), and HalveIGPWeight
(only waypoint property). We pick the BGP router with the
highest degree as the route reflector when constructing the
configuration for iBGP with route reflectors.

We evaluate CURSOR with 5 identical configuration update
tasks and compare the time with Snowcap. We show the
experimental results in Figure 7. The dashed link in red
identifies the points where the CURSOR’s synthesis time
equals Snowcap. The results show that CURSOR can save
80% of time on average.

C. Evaluating the Scalability with Synthesized Topologies

We evaluate the scalability of CURSOR with synthesized
large-scale networks with randomly generated IGP weight. We
generate the configuration update scenario where the iBGP
configuration was initially fully meshed iBGP and moved to
a multi-cluster iBGP with route reflectors (FM2SCRR). To
increase the complexity of the problem and evaluate CURSOR
further, we double the IGP link weight if the source and target
router are in different clusters in the target configuration.

We compare the synthesis time of CURSOR and Snowcap.
We synthesize the update order when reachability property
is required and choose one of the BGP routers with eBGP
sessions and require the egress point to be chosen at all times
(i.e., waypoint). Figures 8(a) and 8(b) illustrate the compar-
ison between CURSOR and Snowcap. We set the timeout
to 5 hours. The experimental results show that CURSOR
can reduce the time to synthesize the update order by an
order of magnitude when the number of updates grows larger.
CURSOR can derive one safe order of applying updates within
three hours when the number of updates grows to 100,000,
while Snowcap timed out at 1,000.

100 101 102

100

101

102

Snowcap [ms]

C
U

R
SO

R
[m

s] FM2SCRR
SCRR2FM

(a) Transiting between fully meshed
iBGP and iBGP with route reflection.

50 100

20
40
60
80

100

Snowcap [ms]

C
U

R
SO

R
[m

s] Merge
Split

(b) Network acquisition and split.

50 100 150

20
40
60
80

100

Snowcap [ms]

C
U

R
SO

R
[m

s] Double
Half

(c) Scaling IGP link weight (waypoint
only).

Fig. 7: Synthesizing configuration update ordering on real-world topologies.

(a) Reachability (b) Waypoint

Fig. 8: CURSOR v.s. Snowcap in terms of synthesis time.

VIII. RELATED WORK

A. Data Plane Verification

To ensure the safety of networks, network verification
has been proposed to verify network properties. Data plane
verification [19], [32], [33] collects forwarding information
base (FIB) from individual routers and verifies properties on a
specific snapshot. However, the network is a dynamic system
with configuration updates to adopt new features and accom-
modate increasing traffic demands. Data plane verification is
fast. However, every change requires a complete verification
to guarantee network safety under new environments.

Incremental data plane verification [18] verifies the data
plane on the fly, blocking FIB changes in case of violation of
network properties. However, not all changes can be blocked.
For example, one cannot prevent a device from failing.

B. Control Plane Verification

To guarantee the safety of network configuration, control
plane verifications [1], [3], [4], [10], [12], [24], [29], [38]
have been proposed over the years. Control plane verifica-
tion takes one or more network configurations with network
environments as input and verifies certain properties hold
under the configuration. In case of configuration changes, these
systems can be used to verify the network property on the new
configuration and guarantee that the new configuration still
satisfies the network properties and does not cause violations
when deployed. However, control plane verifications cannot
be simply applied to derive a safe order for updates due to the
large number of potential intermediate configurations.

C. Configuration Update Synthesis

Best practices and update guidelines [2], [7]–[9], [13], [15],
[34], [35] have been made available by researchers to help

network operators plan the configuration updates and reduce
the chances of having outages and other unexpected issues
during the update process. Although these guidelines have
been tested and deployed in many real-world scenarios, best
practice does not guarantee a safe order for any specific update
scenario due to the existence of access lists, etc.

Network configuration update synthesis [22], [27], [36]
takes real update scenarios and the network properties as
input and synthesizes an order of applying updates such that
network properties hold at all times. Network operators can
follow the output sequence without worrying about how to
apply guidelines. Existing works synthesize the update order
by searching the order space. Although these works propose
pruning mechanisms, they can lead to a large search space
when the order space grows. In contrast to existing work,
this paper directly exposes the rules for update order and no
enumeration is needed.

D. Updates on Software Defined Networks

Forwarding rule updates on Software Defined Networks
have a similar problem where the order of instructions on
changing the forwarding rules needs to be carefully planned
to avoid transient violations of network properties. Existing
works [5], [11] have been proposed to address this problem.
Our work is directly inspired by the approach for SDN, which
explicitly exposes rules for update order.

IX. CONCLUSION

This paper proposes a rule-based synthesis, CURSOR,
to derive a safe order of applying changes under network
configuration updates. CURSOR accelerates the synthesis of
configuration order by extracting the rules the update order
should follow. CURSOR achieves this goal by representing
the network properties with update states. CURSOR solves
an order of applying updates with heuristic algorithms. We
implemented the synthesis toolkit, which exploits CURSOR.
The experimental results show that CURSOR can reduce the
time it takes to derive a safe order by an order of magnitude
compared to the state-of-the-art approach.

X. ACKNOWLEDGEMENT

This work was supported in part by NSF under Grant CNS-
1900866 and Grant CCF-1918187.

REFERENCES

[1] A. Abhashkumar, A. Gember-Jacobson, and A. Akella. Tiramisu:
Fast multilayer network verification. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20), pages 201–
219, Santa Clara, CA, Feb. 2020. USENIX Association.

[2] P. S. Barry Raveendran Greene. Cisco ISP Essentials. Cisco Press,
2002.

[3] R. Beckett and A. Gupta. Katra: Realtime verification for multilayer
networks. In 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), pages 617–634, Renton, WA, Apr. 2022.
USENIX Association.

[4] R. Beckett, A. Gupta, R. Mahajan, and D. Walker. A general approach to
network configuration verification. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communication, SIGCOMM
’17, page 155–168, New York, NY, USA, 2017. Association for Com-
puting Machinery.

[5] S. Brandt, K.-T. Förster, and R. Wattenhofer. On consistent migration
of flows in sdns. In IEEE INFOCOM 2016 - The 35th Annual IEEE
International Conference on Computer Communications, pages 1–9,
2016.

[6] E. Chen, T. J. Bates, and R. Chandra. BGP Route Reflection: An
Alternative to Full Mesh Internal BGP (IBGP). RFC 4456, Apr. 2006.

[7] F. Clad, P. Mérindol, J.-J. Pansiot, P. Francois, and O. Bonaventure.
Graceful convergence in link-state ip networks: A lightweight algorithm
ensuring minimal operational impact. IEEE/ACM transactions on
networking, 22(1):300–312, 2013.

[8] F. Clad, P. Mérindol, S. Vissicchio, J.-J. Pansiot, and P. Francois.
Graceful router updates in link-state protocols. In 2013 21st IEEE
International Conference on Network Protocols (ICNP), pages 1–10,
2013.

[9] N. El Rachkidy and A. Guitton. Changing the routing protocol without
transient loops. Computer Communications, 82:49–58, 2016.

[10] S. K. Fayaz, T. Sharma, A. Fogel, R. Mahajan, T. Millstein, V. Sekar,
and G. Varghese. Efficient network reachability analysis using a succinct
control plane representation. In Proceedings of the 12th USENIX Con-
ference on Operating Systems Design and Implementation, OSDI’16,
page 217–232, USA, 2016. USENIX Association.

[11] B. Finkbeiner, M. Gieseking, J. Hecking-Harbusch, and E.-R. Olderog.
Model checking data flows in concurrent network updates (full version),
2019.

[12] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan,
R. Mahajan, and T. Millstein. A general approach to network con-
figuration analysis. In Proceedings of the 12th USENIX Conference
on Networked Systems Design and Implementation, NSDI’15, page
469–483, USA, 2015. USENIX Association.

[13] P. Francois and O. Bonaventure. Avoiding transient loops during the
convergence of link-state routing protocols. IEEE/ACM Transactions on
Networking, 15(6):1280–1292, 2007.

[14] A. Gember-Jacobson, R. Viswanathan, A. Akella, and R. Mahajan. Fast
control plane analysis using an abstract representation. In Proceedings of
the 2016 ACM SIGCOMM Conference, SIGCOMM ’16, page 300–313,
New York, NY, USA, 2016. Association for Computing Machinery.

[15] J. A. B. v. d. V. Gonzalo Gómez Herrero. Network Mergers and
Migrations. 2011.

[16] R. Govindan, I. Minei, M. Kallahalla, B. Koley, and A. Vahdat. Evolve
or die: High-availability design principles drawn from googles network
infrastructure. In Proceedings of the 2016 ACM SIGCOMM Conference,
SIGCOMM ’16, page 58–72, New York, NY, USA, 2016. Association
for Computing Machinery.

[17] T. G. Griffin, F. B. Shepherd, and G. Wilfong. The stable paths problem
and interdomain routing. IEEE/ACM Trans. Netw., 10(2):232–243, apr
2002.

[18] A. Horn, A. Kheradmand, and M. Prasad. Delta-net: Real-time network
verification using atoms. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), pages 735–749, Boston,
MA, Mar. 2017. USENIX Association.

[19] P. Kazemian, G. Varghese, and N. McKeown. Header space analysis:
Static checking for networks. In 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 12), pages 113–126, San
Jose, CA, Apr. 2012. USENIX Association.

[20] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan. The
internet topology zoo. Selected Areas in Communications, IEEE Journal
on, 29(9):1765 –1775, october 2011.

[21] A. Lerner. The cost of downtime, 1999.
[22] J. McClurg, H. Hojjat, P. Černý, and N. Foster. Efficient synthesis of

network updates. SIGPLAN Not., 50(6):196–207, jun 2015.
[23] J. Moy. OSPF Version 2. RFC 2328, Apr. 1998.
[24] S. Prabhu, K.-Y. Chou, A. Kheradmand, P. B. Godfrey, and M. Caesar.

Plankton: Scalable network configuration verification through model
checking. In Proceedings of the 17th Usenix Conference on Networked
Systems Design and Implementation, NSDI’20, page 953–968, USA,
2020. USENIX Association.

[25] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang. Test-
case reduction for c compiler bugs. In Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’12, page 335–346, New York, NY, USA, 2012.
Association for Computing Machinery.

[26] Y. Rekhter, S. Hares, and T. Li. A Border Gateway Protocol 4 (BGP-4).
RFC 4271, Jan. 2006.

[27] T. Schneider, R. Birkner, and L. Vanbever. Snowcap: Synthesizing
network-wide configuration updates. In Proceedings of the 2021 ACM
SIGCOMM 2021 Conference, SIGCOMM ’21, page 33–49, New York,
NY, USA, 2021. Association for Computing Machinery.

[28] X. Shao, Z. Chen, D. Holcomb, and L. Gao. Accelerating bgp
configuration verification through reducing cycles in smt constraints.
IEEE/ACM Transactions on Networking, 30(6):2493–2504, 2022.

[29] X. Shao and L. Gao. Verifying policy-based routing at internet
scale. In IEEE INFOCOM 2020 - IEEE Conference on Computer
Communications, pages 2293–2302, 2020.

[30] H. Smit and T. Li. Intermediate System to Intermediate System (IS-IS)
Extensions for Traffic Engineering (TE). RFC 3784, June 2004.

[31] Y.-W. E. Sung, X. Tie, S. H. Wong, and H. Zeng. Robotron: Top-
down network management at facebook scale. In Proceedings of the
2016 ACM SIGCOMM Conference, SIGCOMM ’16, page 426–439,
New York, NY, USA, 2016. Association for Computing Machinery.

[32] B. Tian, J. Gao, M. Liu, E. Zhai, Y. Chen, Y. Zhou, L. Dai, F. Yan,
M. Ma, M. Tang, J. Lu, X. Wei, H. H. Liu, M. Zhang, C. Tian, and
M. Yu. Aquila: A practically usable verification system for production-
scale programmable data planes. In Proceedings of the 2021 ACM
SIGCOMM 2021 Conference, SIGCOMM ’21, page 17–32, New York,
NY, USA, 2021. Association for Computing Machinery.

[33] B. Tian, X. Zhang, E. Zhai, H. H. Liu, Q. Ye, C. Wang, X. Wu, Z. Ji,
Y. Sang, M. Zhang, D. Yu, C. Tian, H. Zheng, and B. Y. Zhao. Safely
and automatically updating in-network acl configurations with intent
language. In Proceedings of the ACM Special Interest Group on Data
Communication, SIGCOMM ’19, page 214–226, New York, NY, USA,
2019. Association for Computing Machinery.

[34] L. Vanbever, S. Vissicchio, L. Cittadini, and O. Bonaventure. When the
cure is worse than the disease: The impact of graceful igp operations on
bgp. In 2013 Proceedings IEEE INFOCOM, pages 2220–2228, 2013.

[35] L. Vanbever, S. Vissicchio, C. Pelsser, P. Francois, and O. Bonaventure.
Seamless network-wide igp migrations. SIGCOMM Comput. Commun.
Rev., 41(4):314–325, aug 2011.

[36] L. Vanbever, S. Vissicchio, C. Pelsser, P. Francois, and O. Bonaventure.
Lossless migrations of link-state igps. IEEE/ACM Transactions on
Networking, 20(6):1842–1855, 2012.

[37] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing
input. IEEE Transactions on Software Engineering, 28(2):183–200,
2002.

[38] P. Zhang, A. Gember-Jacobson, Y. Zuo, Y. Huang, X. Liu, and H. Li.
Differential network analysis. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pages 601–615, Renton,
WA, Apr. 2022. USENIX Association.

