
DPillar: Scalable Dual-Port Server Interconnection
for Data Center Networks

Yong Liao
ECE Department

University of Massachusetts

Amherst, MA 01003, USA

Dong Yin
Automation Department

Northwestern Polytech University

Xi’an, ShanXi 710072, China

Lixin Gao
ECE Department

University of Massachusetts

Amherst, MA 01003, USA

Abstract—Data centers are becoming increasingly important
infrastructures for many essential applications such as data
intensive computing and large-scale network services. A typical
future data center can consist of up to hundreds of thousands of
servers. Yet, the conventional data center networks are not able to
keep up with the network bandwidth requirement for efficiently
connecting that huge number of servers in a cost-efficient manner.
In this paper, we present DPillar, a highly scalable data center
interconnection architecture, which uses only low-end off-the-
shelf commodity PC servers and switches. DPillar has minimal
requirements for the equipment. The switches are low-cost plug-
and-play layer-2 devices and servers are dual-port commodity
PCs. The salient feature of DPillar is that it expands to any
number of servers without requiring to physically upgrade the
existing servers. We present simple yet efficient routing schemes
for DPillar and evaluate the routing performance via simulations.

I. INTRODUCTION

Data centers with a cluster of commodity servers become

common places for data storage, data analysis, and running

large-scale network services [1,2]. Such a data center infras-

tructure is driven by the demand of petabyte of data storage

and high computation power required for processing the data.

It is commonly projected that the demand for data storage

and processing will grow rapidly as more data are available for

applications such as web searching, medical image processing,

social network mining, and scientific computing. To meet the

demand of the growth, one of the essential requirements for

data center infrastructure is that it must scale to hundreds of

thousands or millions of servers.

While inexpensive commodity PCs make it possible to

expand a data center to millions of servers, interconnecting

these servers in a scalable and cost-efficient fashion can be

challenging. With a data center of increasing server number

and storage size, the communication bandwidth has to scale

more than linearly (or squarely) to meet the bandwidth demand

of frequent data accessing and shuffling in distributed data

processing and storage. In order to keep the interconnection

cost low, one natural choice for interconnecting these servers is

to leverage commodity hardware such as inexpensive Ethernet

switches and the existing network cards in commodity servers.

So far, there are two approaches for interconnecting servers

with commodity switches. The first approach is switch centric

where the switch functionality is extended to accommodate the

need of the interconnection, while requiring no modification

to the servers [3]–[5]. The second approach is server centric

where each server acts as both data processing/storage and data

relay node while requiring no change to the switches [6]–[8].

In this paper, we take a server centric approach and propose

a server interconnection structure called DPillar. Each server

in a DPillar network is a computation workstation as well

as an intermediate node relaying data between other servers.

A server centric design offers several attractive advantages

as compared to a switch centric design. First, shifting the

networking functionalities from a separate switching fabric

to the servers provides much higher degree of programming

capability, which facilitates the design of intelligent routing

schemes. Second, a server centric design is much more cost-

efficient because it uses only low-end layer-2 dummy switches.

The network structure of DPillar resembles existing multi-

stage interconnection schemes [9,10]. However, DPillar offers

several practical advantages in building large size and scalable

data centers. DPillar aims to leverage plug-and-play commod-

ity Ethernet switches with only layer-2 switching capability.

Ethernet switches with moderate number of ports (e.g., 24 or

48 ports) and with the ability to switch at line speed are widely

available and relatively inexpensive. Layer-2 Ethernet switches

also have the advantage of requiring minimal configuration

effort as they are basically plug-and-play devices. Further,

DPillar requires only two network interfaces for each server.

As most off-the-shelf PC servers and servers in existing data

centers already have two high-speed Gbit Ethernet ports,

one primary port and one backup port, there is no need to

physically upgrade the servers when using new commodity

servers or reusing servers in existing data centers to build

a DPillar data center. When expanding an existing DPillar

network with additional servers, it is not required to upgrade

existing servers in the data center either (note that although

upgrading servers like installing additional NICs is cheap in

terms of the equipment cost, but the time and human power

needed to upgrade tens or hundreds of thousands servers are

very expensive). Therefore, DPillar can scale to any number

of servers with minimal deployment overhead.

Despite the fact that each server has only two network inter-

faces, DPillar offers rich connections between servers and the

aggregate bandwidth can facilitate data-intensive applications.

A DPillar network structure is totally symmetric, so that it

removes any network bottleneck at the architecture level. We

have designed a simple yet highly efficient routing scheme

for DPillar network. One salient feature of the proposed

routing scheme is that it eliminates the need of doing table

lookup in packet forwarding. Our prototyping implementation

using commodity PC shows that the PC servers can perform

data forwarding in line speed without consuming significant

resources at the servers [11]. Therefore, such an intercon-

nection structure is feasible for the server centric approach.

Furthermore, we propose routing schemes that can efficiently

handle a wide range of failures in DPillar network.

The rest of this paper is organized as follows. Section II

presents the topological structure of the DPillar network.

Section III and section IV are devoted to the discussion of

routing in DPillar network. Section V presents the performance

evaluation of DPillar. Section VI concludes this paper.

II. INTERCONNECTION OF DPILLAR

In this section, we first present the interconnection structure

of DPillar. Then we discuss the topological properties of

DPillar and the cost of building such a network. We also

discuss the differences between DPillar and a closely related

multi-stage interconnection network.

A. DPillar Network Structure

A DPillar network is built of two kinds of devices, dual-port

servers and n-port switches. The servers are arranged into k
columns and so are the switches. Hence, a DPillar network is

uniquely defined by two parameters, n and k. We call such a

DPillar network an (n, k) DPillar network.

We use H0 ∼ Hk−1 to represent the k server columns and

S0 ∼ Sk−1 to represent the k switch columns. The k server

columns and k switch columns are alternately placed along a

cycle, as shown in Fig. 1. Visually, it looks like the 2k columns

of servers and switches are attached to the cylindrical surface

of a pillar. Using its two ports, a server in each server column

is connected to two switches in its two neighboring switch

columns. In other words, for a server in column Hi, one of

its ports is connected to a switch in column Si and the other

port is connected to a switch in column S(i+k−1)%k. For a

switch in column Si, half of its n ports are connected to n/2
servers in Hi and the other half are connected to n/2 servers

in H(i+1)%k. For easy description, in the rest we call server

column H(i+1)%k a clockwise neighboring column of Hi and

H(i+k−1)%k a counter-clockwise neighboring column of Hi.

0H
0S

1H

1S

counter-

clockwise

clockwise

...

...

iS
iH

1-iS

1-kS

1-kH

Fig. 1. The vertical view of a DPillar network.

In a DPillar network with k columns of servers, each server

column has (n/2)k servers; each switch column has (n/2)k−1

switches. For the (n/2)k servers in any server column Hi, each

of them is assigned with a unique k-symbol label (νk−1...ν0),
where νi ∈ [0, n/2 − 1] (0≤i≤k − 1). Under this naming

scheme, one server in DPillar can be uniquely identified as

(C, νk−1...ν0), which means a server with label (νk−1...ν0)
in server column HC . We call (C, νk−1...ν0) the ID or the

address of the server.

Given the IDs of the servers in a DPillar network, the

interconnection between the servers and the switches is as

follows. For all the 2(n/2)k servers in any server column HC

and its clockwise neighboring server column H(C+1)%k, they

can be divided into (n/2)k−1 groups, with each group having

n servers. The labels of the n servers in the same group have

the following property. That is, their labels are the same if

the Cth symbol (i.e., symbol νC) is removed. It is easy to

see that among the n servers within the same group, half of

them are from HC and the other half are from H(C+1)%k.

The n servers in the same group are connected to the same

switch in switch column SC . In other words, given any label

(νk−1...νC ...ν0), there are n/2 servers in HC whose labels

are (νk−1...νC
∗
...ν0) where 0 ≤ νC

∗
≤ n/2− 1; there are n/2

such servers in H(C+1)%k too. Those n servers are connected

to the same n-port switch in SC .
0H 1H0S 1S 0H

00

01

02

03

10

11

12

13

20

21

22

23

30

31

32

33

00

01

02

03

10

11

12

13

20

21

22

23

30

31

32

33

la
b
e
l

Fig. 2. Two-dimension view of a DPillar network.

Fig. 2 shows an (8, 2) DPillar network (note that we dupli-

cate server column H0). Each server column has (82)
2 = 16

servers. The label of each server has two symbols. The first

row of servers in Fig. 2 have label (00) and the last row of

servers have label (33). If we select a label (ν1ν0)=(00), there

are four servers in H1 whose labels are (ν1
∗
0) with 0≤ν1

∗
≤3,

i.e., (00), (10), (20), and (30). There are four servers in H0

whose labels are (00), (10), (20), and (30) too. Those eight

servers are connected to the same switch in switch column S1.

B. DPillar Topological Properties

After presenting the interconnection of DPillar, we proceed

to study the basic topological properties of DPillar.

1) Number of servers: Since each server column has

(n/2)k servers, there are k(n/2)k servers in an (n, k) DPillar

network. Let N represent the total number of servers in an

(n, k) DPillar network, we have N = k(n/2)k.

Considering that 48-port Gbit Ethernet switches are widely

available now and relatively inexpensive, a (48, 3) DPillar

network has 41, 472 servers. The number of servers will be

about 1.3 million for a (48, 4) DPillar network. If we build a

(48, 5) DPillar network, it has about 40 million servers.

2) Number of switches: As we have mentioned, each

switch column has (n/2)k−1 switches in an (n, k) DPillar

network. As there are k switch columns, the total number

of switches is k(n/2)k−1. Actually, there is an explanation

why there are (n/2)k−1 switches in each switch column.

If we change all other symbols in label (νk−1...νC ...ν0)
except symbol νC , there are (n/2)k−1 different combinations.

Each of those (n/2)k−1 combinations requires one switch to

connect n servers whose labels are (νk−1...νC
∗
...ν0) where

0 ≤ νC
∗

≤ n/2−1. Therefore, the number of switches in each

switch column is (n/2)k−1 and the total number of switches

in an (n, k) DPillar network is k(n/2)k−1.

3) Bisection width: Bisection width is an important cri-

terion to quantify the performance of an inter-connection

network. It is defined as the smallest number of edges removal

of which divides the nodes in the network into two parts

of equal size. Larger bisection width means the network

can sustain more communications between nodes, which is

important for running communication intensive applications

like MapReduce [12]. The bisection width of an (n, k) DPillar

network is (n/2)k, as stated in Proposition II.1. The proof is

presented in [11].

Proposition II.1 The bisection width of an (n, k) DPillar

network is close to (n/2)k.

C. Building Cost

DPillar network is cost-efficient as it uses inexpensive com-

modity hardware. Here we provide some “example budgets”

of building DPillar networks. We ignore the cost of servers

and focus on the networking devices (switches and Ethernet

cables). As most off-the-shelf servers already integrate dual-

port interfaces, there is no need to invest on NICs.

TABLE I shows the total cost and the per-server cost of

building DPillar networks with four servers columns, when

different types of switches are used. The prices for the four

types of switches are gotten from an online retailing store

(www.newegg.com) and we assume each cable costs $1. We

expect their wholesale price would be even lower. In general,

letting Us be the unit price of a n-port switch and Uc be the

unit price of an Ethernet cable, the average cost of connecting

one server in the DPillar network is 2(Us/n+ Uc).
TABLE I

THE COST OF THE NETWORKING DEVICES WHEN USING FOUR TYPES OF

SWITCHES TO BUILD DPILLAR NETWORKS WITH FOUR SERVER COLUMNS.

switch type 8-port 16-port 24-port 48-port

switch unit price $50 $150 $180 $600
of servers 1,024 16,384 82,944 1,327,104

networking cost $14,848 $339,968 $1,410,048 $35,831,808
per-server cost $14.5 $20.75 $17 $27

D. Contrasting DPillar and Existing Network Structure

Our DPillar network is closely related to wrapped butterfly

network [9], which is one of the multi-stage interconnection

networks extensively studied before. However, the servers in

a wrapped butterfly network must have four ports. Because

most commodity servers and servers in existing data centers

integrate only two ports, we have to physically upgrade the

servers if using a wrapped butterfly network to interconnect

them. Although the cost of investing additional network in-

terfaces is not an issue, installing those interfaces in a large

number of servers can be quite time and manpower consuming.

By connecting the servers via switches, DPillar can use off-

the-shelf and existing dual-port servers to build a scalable data

center network.

The bisection width or an (n, k) DPillar network is equal

to the number of servers in each server column. A wrapped

butterfly network also has this property [9]. However, a

wrapped butterfly network uses degree 4 nodes, but DPillar

achieves the same bisection width using degree 2 nodes.

III. ROUTING IN DPILLAR NETWORK

Because of its symmetric structure, routing in DPillar net-

work can be simple and efficient. In this section, we first

describe the packet forwarding process in DPillar, based on

which we design an efficient DPillar routing algorithm. We

also briefly discuss the performance of the routing algorithm.

A. Two-Phase Packet Forwarding in DPillar

The packet forwarding process in DPillar can be divided

into two phases. In the first phase, the packet is forwarded

from the source server to an intermediate server whose label

is the same as the destination’s label. In the second phase, the

packet is sent from that intermediate server to the destination.

We consider a source server s sends a packet to destination

server d. The addresses of those two servers are (Cs, Ls) and

(Cd, Ld), where Ls and Ld are the k-symbol labels of s and

d, i.e., Ls=(νk−1
s ...ν0s), Ld=(νk−1

d
...ν0

d
), and Ls 6= Ld.

1) Phase one – helix phase: From server s in column HCs
,

the packet can be sent to a server s1 in column H(Cs+1)%k.

The labels of s and s1 are the same except the Csth symbol

of s1’s label can be any number in [0, n/2 − 1]. If s1 sends

the packet to s2 in column H(Cs+2)%k, the labels of s1 and

s2’s are the same except that the ((Cs + 1)%k)th symbol

of s2’s label can be any number in [0, n/2 − 1]. We see

that forwarding a packet one hop can “change” one symbol

in the label of the server receiving that packet. When a

packet is always forwarded from one server column to its

clockwise neighboring server column, the packet can reach

a server with any given label in k hops. For example, in an

(n, k) DPillar network, the trace of a packet forwarded from

(0, 0...0) to (k−1, 1...1) is (0, 0...0) → (1, 0...1) → (2, 0...11)
→ (k−1, 1...1). As this path resembles a helix, we call this

packet forwarding phase the helix phase.

Note that in the helix phase, we can send the packet to either

a server in the clockwise neighboring column or a server in the

counter-clockwise neighboring column. However, the direction

of forwarding a packet should not be changed back and forth

in order to avoid loops. Some field in the packet header can

be used to record the forwarding direction information of this

packet. In DPillar routing, the default direction of forwarding

a packet in the helix phase is the clockwise direction.

2) Phase two – ring phase: After the packet is forwarded

to server d∗, whose label is the same as the label of destination

d, one can forward the packet to d by always sending it to the

server in the clockwise neighboring column whose label is

Ld too, or sending along the counter-clockwise direction. We

select the shorter one among those two paths in our DPillar

routing. In other words, suppose server d∗ is in column HCd∗
,

d∗ sends the packet to a server in column H(Cd∗+1)%k if (Cd+
k − Cd∗)%k ≤ ⌊k

2 ⌋; otherwise server d∗ sends the packet to

a server in column H(Cd∗+k−1)%k. In either case, the label of

the nexthop server should be Ld. As the trace of the packet

forwarding in this phase is like a segment in a ring, we call it

the ring phase.

B. Routing Algorithm

Algorithm 1 shows the pseudocode of the routing algorithm.

This algorithm takes the address of the server running this

algorithm (Cs, Ls), the destination server’s address (Cd, Ld),
and the forwarding direction D as input parameters. D=1
means the direction is clockwise; D=−1 indicates the counter-

clockwise direction. The default value of D should be 1. The

output is the address of the nexthop server (Cu, Lu).

Algorithm 1: SRoute(Cs, Ls, Cd, Ld, D)

input : (Cs, Ls) is the address of the server running this
algorithm. (Cd, Ld) is the destination. D is the
forwarding direction recorded in the packet header
(either 1 or −1). Ls=(νk−1

s ...ν0

s), Ld=(νk−1

d
...ν0

d).
output : Address of the nexthop server (Cu, Lu).
/* Ls−ν

Cs

s means removing the Csth symbol

from label Ls */

if {(Cd+k-Cs)%k≤1 and Ls-νCs
s == Ld-ν

Cs

d
} or1

{(Cs+k-Cd)%k≤1 and Ld-ν
Cd

d
==Ls-ν

Cd
s } then

Cu ← Cd; Lu ← Ld;2

else /* s cannot directly reach d */3

if Ls == Ld then /* the ring phase */4

Lu ← Ld;5

if (Cd + k − Cs)%k ≤ ⌊ k
2
⌋ then Cu←(Cs + 1)%k;6

else Cu ← (Cs + k − 1)%k;7

else /* the helix phase */8

Lu ← (νk−1

s ...νs

d...ν
0

s); Cu ← (Cs +D + k)%k;9

return (Cu, Lu);10

The DPillar routing presented in Algorithm 1 does not

compute the shortest path between two servers. However, the

paths computed by Algorithm 1 have bounded length. Here

we study what is the length of the longest path in a DPillar

network. In counting the path length, we treat the distance

between two servers connecting to the same switch as one hop,

because the switches are dummy layer-2 connection media.

From source server s, a packet needs to be forwarded at

most k times to reach a server d∗, whose label is the same

as destination server d’s label. After that, from server d∗, the

packet still needs to be forwarded at most ⌊k/2⌋ hops to reach

server d. Therefore, in an (n, k) DPillar network, the longest

path computed by Algorithm 1 is k + ⌊k/2⌋.

IV. HANDLING FAILURES IN DPILLAR

The rich connections in DPillar facilitate the design of sim-

ple yet efficient fault-tolerant routing scheme. In this section,

we present the design of a fault-tolerant routing algorithm

which can bypass a wide range of failures in DPillar.

A. Discovering Failures

To bypass failures in DPillar network, the first step would be

detecting the failures. Each server in DPillar runs a lightweight

Hello protocol to report the reachability to other servers

connected to the same switches. If a server a does not hear

Hello message from server b for a certain period of time, a
assumes b is not directly reachable. Servers should not forward

any Hello messages.
After discovering the failures, the next question would be

how to bypass those failures. In the following, we discuss how

to bypass failures when the packet forwarding is in the helix

phase and the ring phase, respectively.

B. Bypassing Failures in Helix Phase

In bypassing failures in the helix phase, our goal is to detour

a packet so that it can still reach a server whose label is the

same as the destination of that packet. After that, the packet

is forwarded in the ring phase and section IV-C discusses how

to bypass failures in the ring phase.
Our fault-tolerant routing scheme works in the following

three steps in the helix phase: (1) if a nexthop server in the

clockwise neighboring column is not reachable, we first try

to send the packet to another directly reachable server in the

clockwise neighboring column; (2) if none of the servers in

the clockwise neighboring column is directly reachable, the

packet takes a “u-turn” and be forwarded to a server in the

counter-clockwise neighboring column; (3) after the u-turn,

the packet should be forwarded along the counter-clockwise

direction throughout the helix phase.

000

001

010

011

100

101

110

111

la
b
e
l

000

001

010

011

100

101

110

111

1H
2H0H 0H

Fig. 3. A (4, 3) DPillar network example.

1) Bypassing a failed clockwise server: Suppose server s
sends a packet to destination d. According to Algorithm 1,

s should send the packet to nexthop u. If s finds that u
is not directly reachable any longer, s should try to bypass

the failed server u. However, simply forwarding the packet

to an alternative clockwise nexthop can cause loops in some

scenarios. For example, in Fig. 3, when server (0,000) sends a

packet to (2,001), Algorithm 1 tells us the ID of the nexthop

should be (1,001). If server (1,001) has failed and server

(0,000) tries to bypass that failure by sending the packet to

server (1,000), the path taken by the packet will be (0,000) →
(1,000) → (2,000) → (0,000), which is a loop.

The reason for the loop to occur is that, server s tries to

bypass u and sends the packet to server v, but s is in the path

(computed by Algorithm 1) from v to a server whose label

is the same as destination d. To avoid this loop, we can let

v send the packet to a clockwise neighbor w, so that neither

s nor u is in the path from w to a server whose label is the

same as destination d. For example, if (1,000) forwards the

packet to (2,010), the path taken by the packet will be (0,000)

→ (1,000) → (2,010) → (0,010) → (1,011) → (2,001).

We use tunneling to ensure the packet is forwarded from

s to w (they are two hops away) without using the failed

server u. In the above example, server (0,000) encapsulates the

packet with another header, whose destination is set to (2,010).

Tunneling the packet between (0,000) and (2,010) makes sure

the path of the encapsulated packet is (0,000) → (1,000) →
(2,010). Therefore, the failed server (1,001) is bypassed.

We conclude the discussion into Proposition IV.1. Note that

we omit the %k in presenting the indexes for clarity.

Proposition IV.1 When sending a packet to destination

(Cd, ν
k−1
d

...ν0
d
), server (Cs, ν

k−1
s ...ν0s) can bypass server

(Cs + 1, νk−1
s ...νCs

d
...ν0s) by tunneling the packet to (Cs +

2, νk−1
s ...νCs+1

w νCs

w ...ν0s), if νCs

w 6=νCs

d
and νCs+1

w 6=νCs+1
s .

Proof: Due to the symmetry of DPillar, without losing

generality, we consider server s (0, νk−1
s ...ν0s), bypasses server

(1, νk−1
s ...ν1sν

0
d
) in reaching destination (Cd, ν

k−1
d

...ν0
d
).

Server s tunnels the packet to server w, whose address is

(2, νk−1
s ...ν1wν

0
w), where ν0w 6= ν0

d
and ν1w 6= ν1s .

To tunnel the packet from s to w, the nexthop is

(1, νk−1
s ...ν1sν

0
w). Because ν0w 6= ν0

d
, that nexthop is not the

failed server (1, νk−1
s ...ν1sν

0
d
). After the packet is forwarded

from w to server s0 in column H0, the address of s0 is

(0, νk−1
d

...ν1wν
0
w). As ν1w 6=ν1s , s0 is not s. Server s0 forwards

the packet to server s1 in column H1 whose address is

(0, νk−1
d

...ν1wν
0
d
). Because ν1w 6=ν1s , s1 is not the failed server

(1, νk−1
s ...ν1sν

0
d
). After s1 forwards the packet, it reaches a

server in H2 whose label is the same as the destination.

2) Making a “packet u-turn”: Proposition IV.1 assumes a

server can always forward a packet to another server in its

clockwise neighboring column in the helix phase. However, it

is possible that server s cannot send the packet to any servers

in its clockwise neighboring column, e.g., the server (0,000)

in Fig. 3 has a link failure so it is disconnected from the top

switch between H0 and H1, or the top switch between H0

and H1 has failed. In that case, server s needs to change the

packet forwarding direction (make a “u-turn”) to bypass the

failure, i.e., if a packet cannot be forwarded to a server in

the clockwise direction, it should be forwarded to a server

in the counter-clockwise neighboring column. The forwarding

direction information should be recorded in the packet header,

so that other servers will forward this packet along the new

direction. Similar to the rationale behind Proposition IV.1, we

can prove the following Proposition IV.2. Again, the %k is

omitted in presenting the indexes for clarity.

Proposition IV.2 When sending a packet to destination

(Cd, ν
k−1
d

...ν0
d
), if server (Cs, ν

k−1
s ...ν0s) cannot reach any

server in HCs+1, it can bypass the failure by changing the

packet forwarding direction and sending the packet to server

(Cs−1, νk−1
s ...νCs−1

w ...ν0s), where νCs−1
w 6= νCs−1

s .

Proof: We consider that server s, whose ID is (0, νk−1
s ...ν0s),

sends a packet to destination d (Cd, ν
k−1
d

...ν0
d
) but s cannot

reach any server in H1. To bypass the failure, server s changes

the forwarding direction of the packet and sends it to nexthop

w, whose ID is (k − 1, νk−1
w ...ν0s), where νk−1

w 6=νk−1
s .

After the packet is forwarded along the counter-clockwise

direction from w to some server s1 in H1, the address of s1 is

(1, νk−1
w ...ν2

d
ν1
d
ν0s). Because νk−1

w 6=νk−1
s , s1 is not connected

to server s by the same switch. After s1 forwards the packet to

some server s0 in H0, s0’s address is (0, νk−1
w ...ν0

d
). Because

νk−1
w 6=νk−1

s , s0 is not s so no loop occurs. After s0 forwards

the packet to server sk−1 in column Hk−1, the packet reaches

a server whose label is the same as destination server d.

3) Bypassing a failed counter-clockwise server: Once the

forwarding direction of a packet is changed, it is recorded

in the packet header and all servers should forward the

packet along the new direction. To avoid potential forwarding

loops, if the forwarding direction of a packet was changed

before, we should not change its forwarding direction again.

Suppose server s selects a counter-clockwise neighbor u as

the nexthop according to Algorithm 1, if u is unreachable and

there are other reachable counter-clockwise neighbors, s can

bypass the failure according to the following Proposition IV.3.

For a packet whose direction was changed from clockwise

to counter-clockwise and it cannot be forwarded along the

new direction (no server in the counter-clockwise neighboring

column is directly reachable), the packet should be dropped.

Proposition IV.3 When sending a packet to destination

(Cd, ν
k−1
d

...ν0
d
), server (Cs, ν

k−1
s ...ν0s) can bypass server

(Cs−1, νk−1
s ...νCs−1

d
...ν0s) by tunneling the packet to

(Cs−2, νk−1
s ...νCs−1

w νCs−2
w ...ν0s), if νCs−1

w 6=νCs−1
d

and

νCs−2
w 6=νCs−2

s .

The proof of Proposition IV.3 is similar to the proof of

Proposition IV.1. We omit it here to save space.

C. Bypassing Failures in Ring Phase

Bypassing a failed server in the ring phase is relatively

straightforward. As there are two ways to forward a packet to

the destination in the ring phase, the clockwise direction or the

counter-clockwise direction, if it cannot be forwarded along

one direction, a packet should be forwarded along the other

direction. To avoid forwarding loops, the forwarding direction

of a packet should not be changed more than once. If a packet

has changed its forwarding direction in the ring phase and it

encounters a failed server again, we drop that packet.

D. Fault-tolerant Routing Algorithm

Based on the above discussions, we design the DPillar

fault tolerant routing algorithm as shown in Algorithm 2.

FTRoute first calls SRoute to compute a nexthop (Cw, Lw).
Then FTRoute tests whether (Cw, Lw) is reachable. If it is,

FTRoute does nothing; otherwise it tries to find a new nex-

thop according to the basic ideas specified in Proposition IV.1

∼ IV.3. If the new nexthop is null, the packet should be

dropped to prevent forwarding loops.

V. EVALUATIONS

In this section, we study the macroscopic behavior of DPil-

lar by simulating the packet routing and forwarding in a large

scale DPillar network, using a simulation tool developed by

ourselves. Please refer to [11] for the microscopic experiments

in measuring the forwarding performance of DPillar.

Algorithm 2: FTRoute(Cs, Ls, Cd, Ld, D)

input : (Cs, Ls) is the address of the server running this
algorithm. (Cd, Ld) is the address of the destination.
D is the forwarding direction, either 1 or -1.

output : Address of the nexthop server (Cw, Lw).
(Cw, Lw) = SRoute(Cs, Ls, Cd, Ld, D);1

if (Cw,Lw) is reachable then return (Cw,Lw);2

if Ls==Ld then /* the ring phase */3

if the packet direction was changed then4

Cw ← null; Lw ← null;5

else6

if (Cs + k − Cd)%k≤⌊ k
2
⌋ then Cw←(Cs + 1)%k;7

else Cw ← (Cs + k − 1)%k;8

else /* the helix phase */9

if the packet direction was changed then10

apply Proposition IV.3 to get new nexthop;11

if nexthop exists then set Cw and Lw;12

else Cw ← null; Lw ← null;13

else14

apply Proposition IV.1 to get new nexthop;15

if nexthop exists then set Cw and Lw;16

else17

change packet direction according to18

Proposition IV.2;
if nexthop exists then set Cw and Lw;19

else Cw ← null; Lw ← null;20

return (Cw, Lw);21

Average path length: In our simulations, we focus on a

scenario where the DPillar network is built from 12-port

switches, i.e., n = 12, and the number of server columns k
varies. For each network, we randomly select 100, 000 source-

destination pairs and simulate packet routing and forwarding

in the network. Fig. 4 plots the results of the average path

lengths. As expected, the average path length is proportional

to the number of server columns in a DPillar network. For all

server column k, the simulated average path length is always

about 20% shorter than the maximum path length k + ⌊k/2⌋.

 2

 4

 6

 8

 10

 12

 3 4 5 6 7 8 9 10

p
a

th
 l
e

n
g

th

k: number of server columns

Fig. 4. Average path length in DPillar routing.

Average path length in failure-tolerant routing: We also

study the fault-tolerant behavior of DPillar routing. In this

simulation, we use a (12, 4) DPillar network to conduct our

experiments. In each simulation instance, we first randomly

fail a certain number of servers. Then we randomly select

100,000 source-destination pairs and simulate the fault-tolerant

routing scheme in Algorithm 2. We range the number of failed

servers from 1 to 300 and plot the average path length as a

function of the number of failed hosts.

Our simulation results show that the average path length

increases as there are more failed servers in the DPillar

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300

p
a
th

 l
e
n
g
th

number of failed servers

Fig. 5. Path length in fault-tolerant routing.

network. However, no packet drop occurs in our simulations,

even when 300 servers in the DPillar network have failed. As

a (12, 4) DPillar network has about 5,000 servers, 300 server

failures mean 6% of the servers are failed.

VI. CONCLUSION

In this paper, we present DPillar, a scalable data center

network architecture which uses only commodity off-the-shelf

hardware. DPillar can easily scale to huge number of servers

without imposing any additional requirements to the devices,

such as installing additional NICs in the servers. The topology

of DPillar is totally symmetric and a DPillar network has

balanced network capacity. DPillar is server centric and the

networking intelligence is placed in the servers. The switches

used in DPillar are merely dummy layer-2 devices connecting

the servers. We designed simple yet efficient routing schemes

for DPillar. Our experiment studies show that the routing

schemes are high-performance and efficient in bypassing fail-

ures in the network.

ACKNOWLEDGMENT

This work is partially supported by NSF grants CNS-066618

and CNS-0626617. Dong Yin was a visiting student at UMass,

supported by China State Scholarship Fund CSC-2008629080,

when this work was performed.

REFERENCES

[1] “Amazon elastic compute cloud,” http://aws.amazon.com/ec2/.
[2] L. Rabbe, “Powering the Yahoo! network,” Nov. 2006. [Online]. Avail-

able: http://ycorpblog.com/2006/11/27/powering-the-yahoo-network
[3] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data

center network architecture,” in Proceedings of SIGCOMM’ 08, 2008.
[4] R. N. Mysore and et al., “Portland: A scalable fault-tolerant layer 2 data

center network fabric,” in Proceedings of SIGCOMM’ 09, 2009.
[5] “Cisco data center infrastructure 2.5 design guide,” Dec. 2007.

[Online]. Available: www.cisco.com/application/pdf/en/us/guest/netsol/
ns107/c649/ccmigration 09186a008073377d.pdf

[6] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “Dcell: a scalable
and fault-tolerant network structure for data centers,” in Proceedings of

SIGCOMM’ 08, 2008.
[7] D. Li, C. Guo, H. Wu, K. Tan, Y. Zhang, and S. Lu, “FiConn: Using

backup port for server interconnection in data centers,” in Proceedings

of INFOCOM’ 09, 2009.
[8] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, T. Chen, Y. Zhang, and

S. Lu, “BCube: A high performance, server-centric network architecture
for modular data centers,” in Proceedings of SIGCOMM’ 09, 2009.

[9] F. T. Leighton, Introduction to Parallel Algorithms and Architectures:

Arrays. Trees. Hypercubes. Morgan Kaufmann, 1992.
[10] M. Jeng and H. Siegel, “A fault-tolerant multistage interconnection

network for multiprocessor systems using dynamic redundancy,” in
Proceedings of ICDCS’ 86, 1986.

[11] Y. Liao, D. Yin, and L. Gao, “Dpillar: Scalable dual-port server
interconnection for data center networks,” Tech. Rep., 2009. [Online].
Available: http://rio.ecs.umass.edu/mnilpub/papers/dpillar09tech.pdf

[12] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” in Proceedings OSDI ’04, 2004.

