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Abstract. Nonnegative Matrix Factorization (NMF) has been applied
with great success to many applications. As NMF is applied to massive
datasets such as web-scale dyadic data, it is desirable to leverage a clus-
ter of machines to speed up the factorization. However, it is challenging
to efficiently implement NMF in a distributed environment. In this pa-
per, we show that by leveraging a new form of update functions, we can
perform local aggregation and fully explore parallelism. Moreover, un-
der the new form of update functions, we can perform frequent updates,
which aim to use the most recently updated data whenever possible. As a
result, frequent updates are more efficient than their traditional concur-
rent counterparts. Through a series of experiments on a local cluster as
well as the Amazon EC2 cloud, we demonstrate that our implementation
with frequent updates is up to two orders of magnitude faster than the
existing implementation with the traditional form of update functions.

1 Introduction

Nonnegative matrix factorization (NMF) [8] is a popular dimension reduction
and factor analysis method that has attracted a lot of attention recently. It arises
from a wide range of applications, including genome data analysis [3], text mining
[15], recommendation systems [7], and social network analysis [13, 20]. NMF
factorizes an original matrix into two low-rank factor matrices by minimizing
a loss function that measures the discrepancy between the original matrix and
the product of the two factor matrices. NMF algorithms typically use update
functions to iteratively and alternately refine factor matrices.

Many practitioners have to deal with NMF on massive datasets. For example,
recommendation systems in web services such as Netflix have been dealing with
NMF on web-scale dyadic datasets, which involve millions of users, millions of
movies, and billions of ratings. For such web-scale matrices, it is desirable to
leverage a cluster of machines to speed up the factorization. MapReduce [4] has
emerged as a popular distributed framework for data intensive computation. It
provides a simple programming model where a user can focus on the computa-
tion logic without worrying about the complexity of parallel computation. Prior
approaches (e.g., [12]) of handling NMF on MapReduce usually select an existing
NMF algorithm and then focus on implementing matrix operations.
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In this paper, we present a new form of factor matrix update functions. This
new form operates on blocks of matrices. In order to support the new form, we
partition the factor matrices into blocks along the short dimension and split the
original matrix into corresponding blocks. The new form of update functions
allows us to update distinct blocks independently and simultaneously when up-
dating a factor matrix. It also facilitates a distributed implementation. Different
blocks of one factor matrix can be updated in parallel. Additionally, the blocks
can be distributed in memories of all the machines in a cluster, thus avoiding
overflowing the memory of one single machine. Storing factor matrices in mem-
ory allows random access and local aggregation. As a result, the new form of
update functions leads to an efficient MapReduce implementation.

Moreover, under the new form of update functions, we can update only a
subset of its blocks when we update a factor matrix, and the number of blocks
in the subset can be adjusted. The only requirement is that when one factor
matrix is being updated, the other one has to be fixed. For instance, we can
update one block of a factor matrix and then immediately update all blocks of
the other factor matrix. We refer to this kind of updates as frequent block-wise
updates. Frequent block-wise updates aim to utilize the most recently updated
data whenever possible. As a result, frequent block-wise updates are more effi-
cient than their traditional concurrent counterparts, concurrent block-wise up-
dates, which update all blocks of either factor matrix alternately. Additionally,
frequent block-wise updates maintain the convergence property in theory.

We implement concurrent block-wise updates on MapReduce and implement
both concurrent and frequent block-wise updates on an extended version of
MapReduce, iMapReduce [25], which supports iterative computations more ef-
ficiently. We evaluate these implementations on a local cluster as well as the
Amazon EC2 cloud. With both synthetic and real-world datasets, the evaluation
results show that our MapReduce implementation for concurrent block-wise up-
dates is 19x - 57x faster than the existing MapReduce implementation [12] (with
the traditional form of update functions) and that our iMapReduce implemen-
tation further achieves up to 2x speedup over our MapReduce implementation.
Furthermore, the iMapReduce implementation with frequent block-wise updates
is up to 2.7x faster than that with concurrent block-wise updates. Accordingly,
our iMapReduce implementation with frequent block-wise updates is up to two
orders of magnitude faster than the existing MapReduce implementation.

2 Background

NMF aims to factorize an original matrix A into two low-rank factor matrices W
and H . Matrix A’s elements must be nonnegative by assumption. The achieved
factorization has the property of A � WH , and the factor matrices W and H
are also nonnegative. A loss function is used to measure the discrepancy between
A and WH . The NMF problem can be formulated as follows.

Given A ∈ R
m×n
+ and a positive integer k � min{m,n}, find W ∈ R

m×k
+ and

H ∈ R
k×n
+ such that a loss function L(A,WH) is minimized.
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Loss function L(A,WH) is typically not convex in both W and H together.
Hence, it is unrealistic to have an approach that finds the global minimum.
Fortunately, there are many techniques for finding local minima.

A general approach is to adopt the block coordinate descent rules [11]:
– Initialize W , H with nonnegative W 0, H0, t← 0.
– Repeat until a convergence criterion is satisfied:
Find Ht+1: L(A,W tHt+1) ≤ L(A,W tHt);
Find W t+1: L(A,W t+1Ht+1) ≤ L(A,W tHt+1).
When the loss function is the square of the Euclidean distance, i.e.,

L(A,WH) = ||A−WH ||2F , (1)

where || · ||F is the Frobenius norm, one of the most well-known algorithms for
implementing the above rules is Lee and Seung’s multiplicative update approach
[9]. It updates W and H as follows:

H = H ∗ WTA

WTWH
, W = W ∗ AHT

WHHT
. (2)

3 Distributed NMF

In this section, we present how to efficiently apply the block coordinate descent
rules to NMF in a distributed environment.

3.1 Decomposition

The loss function is usually decomposable [17]. That is, it can be represented
as the sum of losses for each element in the matrix. For example, the widely
adopted loss function, the square of the Euclidean distance, is decomposable.
We list several popular decomposable loss functions in Table 1. We focus on
NMF with decomposable loss functions in this paper.

Table 1. Decomposable loss functions

Square of Euclidean distance
∑

(i,j)(Aij − [WH ]ij)
2

KL-divergence
∑

(i,j) Aij log
Aij

[WH]ij

Generalized I-divergence
∑

(i,j)(Aij log
Aij

[WH]ij
− (Aij − [WH ]ij))

Itakura-Saito distance
∑

(i,j)(
Aij

[WH]ij
− log

Aij

[WH]ij
− 1)

Distributed NMF needs to partition the matrices W , H , and A across com-
puting nodes. To this end, we leverage a popular scheme in gradient descent
algorithms [6,18] that partitions W and H into blocks along the short dimension
to fully explore parallelism and splits the original matrix A into corresponding
blocks. We use symbolW (I) to denote the Ith block of W, H(J) to denote the J th
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block of H, and A(I,J) to denote the corresponding block of A (i.e., the (I, J)th

block). Under this partition scheme, A(I,J) is only related to W (I) and H(J),
and it is independent of other blocks of W and H , in terms of the loss value
(computed by the loss function). We refer to the partition scheme as block-wise
partition. The view of the block-wise partition scheme is shown in Figure 1.

W(1)

W(2)

W(c)

W = and H = 

A(1,1)  A(1,2) …  A(1,d)

A(2,1)  A(2,2) …  A(2,d)

A(c,1)  A(c,2) …  A(c,d)

A = ,H(1) H(2) … H(d)

(

… … … …… 

Fig. 1. The block-wise partition scheme for distributed NMF

Due to its decomposability, loss function L(A,WH) can be expressed as

L(A,WH) =
∑

I

∑

J

L(A(I,J),W (I)H(J)). (3)

Let FI =
∑

J L(A(I,J),W (I)H(J)) and GJ =
∑

I L(A
(I,J),W (I)H(J)), then

L(A,WH) =
∑

I

FI =
∑

J

GJ . (4)

FI and GJ can be considered as local loss functions. The overall loss function
L(A,WH) is the sum of the local loss functions. By fixing H, FI is independent of
one another. Therefore, FI can be minimized independently and simultaneously
by fixing H . Similarly, GJ can be minimized independently and simultaneously
by fixing W .

3.2 Block-wise Updates

In this paper, we use the square of the Euclidean distance as an example of
decomposable loss functions. Nevertheless, the techniques derived in this section
can be applied to any decomposable loss function.

The block-wise partition allows us to update its blocks independently when
updating a factor matrix (by fixing the other factor matrix). In other words,
each block can be treated as one update unit. We refer to this kind of updates
as block-wise updates. In the following, we illustrate how to update one block of
W (by minimizing FI) and that of H (by minimizing GJ ).

Here we first show how to update one block of H (i.e., H(J)). When W is
fixed, minimizing GJ can be expressed as follows:

min
H(J)

GJ = min
H(J)

∑

I

||A(I,J) −W (I)H(J)||2F . (5)
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We leverage gradient descent to update H(J):

H(J)
αμ = H(J)

αμ − ηαμ[
∂GJ

∂H(J)
]αμ, (6)

where H
(J)
αμ denotes the element at the αth row and the μth column of H(J), ηαμ

is an individual step size for the corresponding gradient element, and

∂GJ

∂H(J)
=

∑

I

[(W (I))TW (I)H(J) − (W (I))TA(I,J)]. (7)

If all step sizes are set to a sufficiently small positive number, the update
should reduce GJ . However, if the number is too small, the decrease speed can
be very slow. To obtain a good speed and to guarantee convergence, we derive
step sizes by following Lee and Seung’s multiplicative update approach [9]:

ηαμ =
H

(J)
αμ

[
∑

I(W
(I))TW (I)H(J)]αμ

. (8)

Then, substituting Eq. (7) and Eq. (8) into Eq. (6), we have:

H(J)
αμ = H(J)

αμ ∗
[
∑

I(W
(I))TA(I,J)]αμ

[
∑

I(W
(I))TW (I)H(J)]αμ

. (9)

Similarly, we can derive the update formula for W (I) as follows:

W (I)
αμ = W (I)

αμ ∗
[
∑

J A(I,J)(H(J))T ]αμ

[
∑

J W (I)H(J)(H(J))T ]αμ
. (10)

Block-wise updates can update each block of one factor matrix independently.
This flexibility allows us to have different ways of updating the blocks. We can
simultaneously update all the blocks of one factor matrix and then update all
the blocks of the other factor matrix. Also, we can update a subset of blocks of
one factor matrix and then update a subset of blocks of the other one, where the
number of blocks in the subsets can be adjusted. Additionally, block-wise up-
dates also facilitate a distributed implementation. Different blocks of one factor
matrix can be updated in parallel. Furthermore, the blocks can be distributed in
memories of all the machines in a cluster, thus avoiding overflowing the memory
of one single machine (when there are large factor matrices). Storing factor ma-
trices in memory allows random access and local aggregation, which are highly
useful for updating them.

3.3 Concurrent Block-wise Updates

With block-wise updates, a straightforward way of fulfilling the block coordinate
descent rules is to update all blocks of H and then update all blocks of W . Since
this approach updates all blocks of H (or W ) concurrently, we refer to it as
concurrent block-wise updates.
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From matrix operation perspective, we can show that concurrent block-wise
updates (using Eq. (9) and Eq. (10)) are equivalent to the multiplicative update
approach shown in Eq. (2). Without loss of generality, we assume that H(J) is a
block of H from the J th

0 column to the J th
b column. Let Y be a block of WTWH

from the J th
0 column to the J th

b column, then we have Y =
∑

I(W
(I))TW (I)H(J)

since WTW =
∑

I(W
(I))TW (I). Assuming that X is a block of WTA from

the J th
0 column to the J th

b column, we can show that X =
∑

I(W
(I))TA(I,J).

As a result, for both the concurrent block-wise updates and the multiplicative
update approach, the formula for updating H(J) is equivalent to H(J) = H(J) ∗
X
Y . Therefore, Eq. (9) is equivalent to the formula for updating H in Eq. (2).
Similarly, we can show that Eq. (10) is equivalent to the formula for updating
W in Eq. (2).

3.4 Frequent Block-wise Updates

Since all blocks of one factor matrix can be updated independently when the
other matrix is fixed, another (more general) way of fulfilling block coordinate
descent rules is to update a subset of blocks of W and then update a subset of
blocks of H . Since this approach updates the factor matrices more frequently
(compared to concurrent block-wise updates), we refer to it as frequent block-wise
updates. Frequent block-wise updates aim to utilize the most recently updated
data whenever possible and thus can potentially accelerate convergence.

More formally, frequent block-wise updates start with an initial guess of W
and H , and then seek to minimize the loss function by iteratively applying the
following two steps:
Step I: Fix W , update a subset of blocks of H using Eq. (9).
Step II: Fix H , update a subset of blocks of W using Eq. (10).
In both steps, the size of the subset is a parameter, and we rotate the subset
among all the blocks to guarantee that each block has an equal chance to be
updated. The size of the subset controls the update frequency. For example, if
we always set the subset to include all the blocks, frequent block-wise updates
degrade to concurrent block-wise updates.

Frequent block-wise updates maintain the convergence property. Using tech-
niques similar to that used in [9], we can prove that GJ and FI are nonincreasing
under formulae Eq. (9) and Eq. (10), respectively. Then, it is straightforward to
prove that L is nonincreasing when frequent block-wise updates are applied and
that L is constant if and only if W and H are at a stationary point of L.

Frequent block-wise updates provide a high flexibility in updating factor ma-
trices. For simplicity, we update a subset of blocks of one factor matrix and then
update all blocks of the other one in each iteration. Here, we assume that we
update a subset of blocks of W and then update all the blocks of H . Intuitively,
updating H frequently might incur additional overhead. However, we find that
the formula for updating H can be incrementally computed. That is, the cost of
updating H grows linearly with the number of W blocks that have been updated
in the previous iteration. As a result, performing frequent updates on H does
not necessarily introduce a large additional cost.
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To incrementally update H when a subset of W blocks are updated, we
introduce a few auxiliary matrices. Let X(J) =

∑
I(W

(I))TA(I,J), X(I,J) =

(W (I))TA(I,J), S =
∑

I(W
(I))TW (I), and S(I) = (W (I))TW (I). Then, H

(J)
αμ can

be updated by

H(J)
αμ = H(J)

αμ ∗
XJ

αμ

[SH(J)]αμ
. (11)

We next show how to incrementally calculate X(J) and S by saving their
values from the previous iteration. When a subset of W (I) (I ∈ C) have been
updated, the new value of X(J) and S can be computed as follows:

X(J) = X(J) +
∑

I∈C

[(W (I)new)TA(I,J) −X(I,J)]; (12)

S = S +
∑

I∈C

[(W (I)new)TW (I)new − S(I)]. (13)

From Eq. (11), Eq. (12), and Eq. (13), we can see that the cost of incrementally
updating H(J) depends on the number of W blocks that have been updated
rather than the total number of blocks that W has.

4 Implementation on Distributed Frameworks

MapReduce [4] and its extensions (e.g, [21, 22, 25]) have emerged as distributed
frameworks for data intensive computation. MapReduce expresses a computation
task as a series of jobs. Each job typically has one map task (mapper) and
one reduce task (reducer). In this section, we illustrate the implementation of
concurrent block-wise updates on MapReduce. Also, we show how to implement
frequent block-wise updates on an extended version of MapReduce, iMapReduce
[25], which supports iterative computations more efficiently.

Block-wise updates enable efficient distributed implementation. With block-
wise updates, the basic computation units in update functions (Eq. (9) and Eq.
(10)) are blocks of factor matrices and of the original matrix. The size of a
block can be adjusted. As a result, when performing essential matrix operations
that involve two blocks of matrices (e.g., (W (I))T and A(I,J)), we can assume
that at least the smaller block can be held in the memory of a single machine.
Since W and H are low-rank factor matrices, they are usually much smaller
than A, and thus the assumption that one of their blocks can be held in the
memory of a single machine is reasonable. The result matrix of an essential
matrix operation (e.g., (W (I))TA(I,J)) is usually relatively small and can be
held in the memory of a single machine as well. Storing a matrix (or a block
of a matrix) in memory efficiently supports random and repeated access, which
is commonly needed in a matrix operation such as multiplication. Maintaining
the result matrix in memory supports local aggregation. Therefore, each single
machine can complete an essential matrix operation locally and efficiently. Note
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that the other (larger) block (e.g., a block of A) is still in disk so as to scale to
large NMF problems.

Accordingly, the MapReduce programming model fits block-wise updates well.
An essential matrix operation with two blocks can be realized in one mapper,
and the aggregation of the results of essential matrix operations can be realized
in reducers. In contrast, the previous work [12], which implements the traditional
form of update functions on MapReduce, has a poor performance. For example,
to perform matrix multiplication (with two large matrices), a row (or column)
of one matrix needs to join with each column (or row) of the other one. Since
neither of these two large matrices can be held in memory, a huge amount of
intermediate data has to be generated and shuffled.

4.1 Concurrent Block-wise Updates on MapReduce

We first show an efficient MapReduce implementation for concurrent block-wise
updates. To realize matrix multiplication with two blocks of matrices in one
mapper, we exploit the fact that a mapper can load data in memory before
processing input key-value pairs and that a mapper can maintain state across the
processing of multiple input key-value pairs and defer emission of intermediate
key-value pairs until all input pairs have been processed.

The update formula for H(J) ( Eq. (9)) can be split into three parts: X(J) =∑
I(W

(I))TA(I,J), Y (J) =
∑

I(W
(I))TW (I)H(J), and H(J) = H(J) ∗ X(J)

Y (J) .

Computing X(J) can be done in one MapReduce job. The mapper calculates
(W (I))TA(I,J), and the reducer performs summation. LetX(I,J)=(W (I))TA(I,J).
When holding W (I) in memory, a mapper can compute X(I,J) via continuously

reading elements of A(I,J) from disk:X
(I,J)
·j =

∑
i=1 A

(I,J)
i,j (W

(I)
i· )T , whereX

(I,J)
·j

is the jth column of X(I,J), and W
(I)
i· is the ith row of W (I). X(I,J) (which is usu-

ally small) stays in memory for local aggregation. Then, the aggregation X(J) =∑
I X

(I,J) can be computed in a reducer. The operations of this job (Job-I) are
illustrated as follows.
– Map: Load W (I) in memory first, then calculate X(I,J) = (W (I))TA(I,J),
and last emit < J,X(I,J) >.

– Reduce: Take < J,X(I,J) > (for any I) and emit < J,X(J) >, where X(J) =∑
I X

(I,J).
Computing Y (J) =

∑
I(W

(I))TW (I)H(J) naturally needs two MapReduce
jobs. One job (Job-II) is used to compute S =

∑
I(W

(I))TW (I), and the other
one is used to calculate Y (J) = SH(J). Let S(I) = (W (I))TW (I). Calculating
S(I) (a small k × k matrix) can be performed in one mapper. Then, all the
mappers send (W (I))TW (I) to one particular reducer for a global summation.
The MapReduce operations are stated as follows.
– Map: Load W (I) in memory first, then calculate S(I) = (W (I))TW (I), and
last emit < 0, S(I) > (sending to reducer 0).

– Reduce: Take < 0, S(I) > and emit < 0, S >, where S =
∑

I S
(I).

After computing S =
∑

I(W
(I))TW (I), calculating Y (J) = SH(J) can be done

in a MapReduce job (Job-III) with the map phase only, as follows.
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– Map: Load S in memory. Emit tuples < J, Y (J) >, where Y (J) = SH(J).
Lastly, one MapReduce job (with the map phase only) can compute H(J) ←

H(J) ∗ X(J)

Y (J) . The operations of this job (Job-IV) are described as follows.

– Map: Read < J,H(J) >, < J,X(J) >, and < J, Y (J) > (column by column).

Emit tuple < J,H(J)new >, where H(J)new = H(J) ∗ X(J)

Y (J) .
In the previous implementation, we try to minimize data shuffling by utilizing

local aggregation. However, in each iteration it still needs four MapReduce jobs
to update H . In addition, intermediate data (e.g., X(J)) needs to be dumped
into disk and be reloaded in latter jobs.

Job 1 Map:

Job 2 Reduce:

Job 2 Map:

Job 1 Reduce:

Fig. 2. Overview of the optimized implementation for updating H(J) on MapReduce

To avoid dumping and reloading intermediate data, such as X(J) and Y (J),
and to minimize the number of jobs, we integrate Job-I, Job-III, and Job-IV
into one job (Job-2). The integrated job has the same map phase as Job-I.
However, in the reduce phase, besides computing X(J), it also computes Y (J)

and finally calculates H(J)new = H(J) ∗ [X(J)/Y (J)]. Job-II can be kept (as
Job-1) for the simplicity of implementation since it only produces a small (k ×
k) matrix and reloading its output does not take much time. The overview of
our optimized implementation is presented in Figure 2, and the MapReduce
operations in the integrated job (Job-2) are described as follows (the operations
in Job-1 are skipped since they are the same with those in Job-II).
– Map: Load W (I) in memory first, then calculate X(I,J) = (W (I))TA(I,J),
and last emit < I,X(I,J) >.

– Reduce: Take < I,X(I,J) >, and first calculate X(J). Load S in memory.
Then, read H(J) so as to compute Y (J). Last, calculate H(J)new .
In the above, we describe the MapReduce operations used to complete the

update ofH for one iteration. UpdatingW can be performed in the same fashion.
The formula for W ( Eq. (10)) can be also treated as three parts: U (I) =∑

J A(I,J)(H(J))T , V (I) =
∑

J W (I)H(J)(H(J))T , and W (I) = W (I) ∗ U(I)

V (I) . Due
to space limitations, we omit the description of its MapReduce operations.

4.2 Frequent Block-wise Updates on iMapReduce

Although frequent block-wise updates have potential to speed up NMF, paral-
lelizing frequent block-wise updates in a distributed environment is challenging.
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Computations such as global summations need to be done in a centralized way.
Synchronizing the global resources in a distributed environment may result in
a considerable overhead, especially on MapReduce. MapReduce starts a new
job for each computation errand. Each job needs to be initialized and to load
its input data, even when the data is from the previous job. Frequent updates
introduce more jobs. Consequently, the initialization overhead and the cost of
repeatedly loading data may cause the benefit of frequent updates to vanish.

In this subsection, we propose an implementation of frequent block-wise up-
dates on iMapReduce [25]. iMapReduce uses persistent mappers and reducers
to avoid job initialization overhead. Each mapper is paired with one reducer. A
pair of mapper and reducer can be seen as one logical worker. Data shuffling be-
tween mappers and reducers is the same with that of MapReduce. In addition,
a reducer of iMapReduce can redirect its output to its paired mapper. Since
mappers and reducers are persistent, state data can be maintained in memory
across different iterations. Accordingly, iMapReduce decreases the overhead of a
job. As a result, it provides frequent block-wise updates with an opportunity to
achieve a good performance.

We implement frequent block-wise updates on iMapReduce in the following
way. H is evenly split into r blocks, and W is evenly partitioned into p∗r blocks,
where r is the number of workers and p is a parameter used to control update
frequency. Each worker handles p blocks of W and one block of H . In each
iteration a worker updates its H block and one selected W block. That is, there
are r blocks of W in total to be updated in each iteration. Each worker rotates
the selected W block among all its W blocks. The setting of p plays an important
role on frequent block-wise updates. Setting p too large may incur considerable
overhead for synchronization. Setting it too small may degrade the effect of the
frequent updates. Nevertheless, we will show in our experiments (Section 5.4)
that quite a wide range of p can enable frequent block-wise updates to have better
performance than concurrent block-wise updates. Note that like the MapReduce
implementation, our iMapReduce implementation still reads A from disk every
time rather than holds it in memory so as to scale to large NMF problems. The
operations in our iMapReduce implementation are illustrated as follows (Map-
1x represents different stages of a mapper, and Reduce-1x represents different
stages of a reducer).

– Map-1a: Load a subset (i.e., p) of W blocks (e.g., (W (B)new)) in mem-
ory (first iteration only) or receive one updated W block from the previ-
ous iteration. For all the loaded or received blocks, compute Sl via Sl =∑

B(W
(B)new)TW (B)new (first iteration) or Sl = Sl+((W (B)new)TW (B)new−

(W (B))TW (B)), and replace W (B) with W (B)new. Broadcast < 0, Sl > to all
the reducers.

– Reduce-1a: Take < 0, Sl >, compute S =
∑

l Sl, and store S in memory.
– Map-1b: For each loaded or received W block in the previous stage (e.g.,
(W (B)new)), emit tuple < J,X(B,J) > where XJ = (W (B)new)TA(B,J) (first
iteration) or < J,ΔX(B,J) > where ΔX(B,J) = (W (B)new)TA(B,J)−X(B,J).
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– Reduce-1b: Take < J,X(B,J) > and calculate X(J) =
∑

B X(B,J) (first
iteration) or take < J,ΔX(B,J) > and calculate X(J) = X(J)+

∑
B ΔX(B,J).

Then, load H(J) into memory (first iteration) and compute Y (J) = SH(J).

Last, calculate H(J)new by (H(J)new = H(J) ∗ X(J)

Y (J) ), store it in memory, and

pass one copy to Map-1c in the form of < J,H(J)new >.
– Map-1c: Receive (just updated) H(J) from Reduce-1b. Broadcast < J,
H(J)(H(J))T > to all the reducers.

– Reduce-1c: Take < J,H(J)(H(J))T >, compute Z =
∑

J H(J)(H(J))T , and
store Z in memory.

– Map-1d: For aW block that is selected in the current iteration (e.g., (W (B))),
emit tuples in the form of < (B,U (B,J) >, where U (B,J) = A(B,J)(H(J))T .

– Reduce-1d: Take < B,U (B,J) > and calculate U (B) =
∑

J U (B,J). Then,

compute V (B) = W (B)Z. Last, calculate W (B)new = W (B) ∗ U(B)

V (B) , store it in
memory, and pass one copy to Map-1a.

5 Evaluation

In this section, we evaluate the efficiency of block-wise updates. To show the
performance improvement, we use the existing implementation [12] as a reference
point. For MapReduce, we leverage its open source version, Hadoop [1].

5.1 Experiment Setup

We build both a local cluster and a large-scale cluster on Amazon EC2. The local
cluster consists of 4 machines, and each one has a dual-core 2.66GHz CPU, 4GB
of RAM, 1TB of disk. The Amazon cluster consists of 100 medium instances,
and each instance has one core, 3.7GB of RAM, and 400GB of disk.

Table 2. Summary of datasets

Dataset # of rows # of columns # of nonzero elements

Netflix 480, 189 17, 770 100M

NYTimes 300, 000 102, 660 70M

Syn-m-n m n 0.1 ∗m ∗ n

Both synthetic and real-word datasets are used in our experiments. We use
two Real-world datasets. One is a document-term matrix, NYTimes, from UCI
Machine Learning Repository [2]. The other one is a user-movie matrix from the
Netflix prize [7]. We also generate several matrices with different choices of m
and n. The sparsity is set to 0.1, and each element is a random integer uniformly
selected from the range [1, 5]. The datasets are summarized in Table 2.

Unless otherwise specified, we use rank k = 10, and use p = 8 for frequent
block-wise updates (which means each worker updates 1/8 of its local W blocks
in each iteration).
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5.2 Comparison with Existing Work

The first set of experiments focus on the advantage of our (optimized) implemen-
tation of concurrent block-wise updates on MapReduce. We compare it with the
existing work of implementing the multiplicative update approach on MapRe-
duce [12], which uses the traditional form of update functions. We also include
the implementation of concurrent block-wise updates on iMapReduce in the
comparison (by setting p = 1) to show iMapReduce’s superiority over MapRe-
duce. As described in Section 3.4, concurrent block-wise updates are equivalent
to the multiplicative update approach, and thus we focus on the time taken in
a single iteration to directly compare the performance. Figure 3 shows the time
taken in one iteration for all the three implementations. Note that the y-axis
is in log scale. Our implementation on MapReduce (denoted by “Block-wise on
MR”) is 19x - 57x faster than the existing MapReduce implementation (denoted
by “Row/Column-wise on MR”). Moreover, the implementation on iMapReduce
(denoted by “Block-wise on iMR”) is up to 2x faster than that on MapReduce.
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Fig. 3. Time taken in one iteration for different implementations on the local cluster

5.3 Effect of Frequent Block-wise updates

To evaluate the effect of frequent block-wise updates, we compare frequent block-
wise updates with concurrent block-wise updates when both are implemented on
iMapReduce. Both update approaches start with the same initial values when
compared on the same dataset. Figure 4 plots the performance comparison. We
can see that frequent block-wise updates (“Frequent”) converge much faster than
concurrent block-wise updates (“Concurrent”) on all the three datasets. In other
words, if we use a predefined loss value as the convergence criterion, frequent
block-wise updates would have much shorter running time.

5.4 Tuning Update Frequency

As stated in Section 4.2, the update frequency affects the performance of fre-
quent block-wise updates. In the experiments, we find that quite a wide range of
p can allow frequent block-wise updates to have a better performance than their
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Fig. 4. Convergence speed on the local cluster
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Fig. 5. Convergence speed vs. update frequency on dataset Netflix. The numbers as-
sociated with “Fre” represent different settings of p.

concurrent counterparts, and the best setting of p stays in the range from 4 to
32. This is also why we set p = 8 by default. For example, Figure 5 shows the
convergence speed with different settings on dataset Netflix. Another interesting
finding is that if a setting is better during a first few iterations, it will continue to
be better. Hence, another way of obtaining a good setting of p is to test several
candidate settings, each for a few iterations, and then choose the best one.

5.5 Different Data Sizes

We also measure how block-wise updates scale with the increasing size of matrix
A. We generate synthetic datasets of different sizes by fixing the number of
(100k) rows and increasing the number of columns. We use the loss value when
concurrent block-wise updates run for 25 iterations as the convergence point.
The time used to reach this convergence point is measured as the running time.
This criterion also applies to the latter comparisons. As presented in Figure 6,
the running times of both types of updates increase linearly with the size of
the dataset. Moreover, frequent block-wise updates are up to 2.7x faster than
concurrent block-wise updates.

To summarize, our iMapReduce implementation with frequent block-wise up-
dates (“Frequent”) is up to two orders of magnitude faster than the exist-
ing MapReduce implementation (“Row/Column-wise on MR”). Take dataset
Syn-100K-20K for example. Our MapReduce implementation with concurrent
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Fig. 6. Running time vs. dataset size on the local cluster

block-wise updates (“Block-wise on MR”) is 57x faster than the existing MapRe-
duce implementation (as shown in Figure 3). The iMapReduce implementation
(“Block-wise on iMR”) achieves 1.5x speedup over the MapReduce implementa-
tion. Furthermore, on iMapReduce, frequent block-wise updates are 1.8x faster
than concurrent block-wise updates. In total, our iMapReduce implementation
with frequent block-wise updates is 154x faster than the existing MapReduce
implementation for dataset Syn-100K-20K.

5.6 Scaling Performance

To validate the scalability of our implementations, we evaluate them on the
Amazon EC2 cloud. We use dataset Syn-1M-20K, which has 1 million rows,
20 thousand columns, and 2 billion nonzero elements. Figure 7a plots the time
taken in a single iteration when all the three implementations are running on
100 nodes. Our implementation on MapReduce is 23x faster than the existing
implementation. Moreover, the implementation on iMapReduce is 1.5x faster
than that on MapReduce. Figure 7b shows the performance as the number of
nodes being used increases from 20 to 100. We can see that the running times
of both frequent block-wise updates and concurrent block-wise updates decrease
smoothly as the number of nodes increases. In addition, frequent block-wise
updates outperform concurrent block-wise updates with any number of nodes in
the cluster.
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Fig. 7. Performance on the Amazon EC2 cloud
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6 Related Work

Matrix factorization has been applied very widely [3,7,13,15,20]. Due to its pop-
ularity and increasingly larger datasets, many approaches for parallelizing it have
been proposed. Zhou et al. [26] and Schelter et al. [16] show how to distribute
the alternating least squares algorithm. Both approaches require each computing
node to have a copy of one factor matrix when the other factor matrix is updated.
This requirement limits their scalability. For large matrix factorization problems,
it is important that factor matrices can be distributed. Several works handle ma-
trix factorization using distributed gradient descent methods [6,10,18,24]. These
approaches mainly focus on in-memory settings, in which both the original ma-
trix and factor matrices are held in memory, and the forms of update functions
used are different from the form we present. Additionally, our approach allows
the original matrix to be in disk so as to scale to large NMF problems. A closely
related work is from Liu et al. [12]. They propose a scheme of implementing the
multiplicative update approach on MapReduce. Their scheme is based on the
traditional form of update functions, which results in a poor performance.

It has been shown that frequent updates can accelerate expectation maxi-
mization (EM) algorithms [14,19,23]. Somewhat surprisingly, there has been no
attempt to apply this method to NMF, even though there is equivalence between
certain variations of NMF and some particular EM algorithms like K-means [5].
Our work demonstrates that frequent updates can also accelerate NMF.

7 Conclusion

In this paper, we find that by leveraging a new form of update functions,
block-wise updates, we can perform local aggregation and thus have an efficient
MapReduce implementation for NMF. Moreover, we propose frequent block-wise
updates, which aim to use the most recently updated data whenever possible. As
a result, frequent block-wise updates can further improve the performance, com-
paring with concurrent block-wise updates. We implement frequent block-wise
updates on iMapReduce, an extended version of MapReduce. The evaluation
results show that our iMapReduce implementation is up to two orders of mag-
nitude faster than the existing MapReduce implementation.
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