
Efficient Social Network Data Query Processing on
MapReduce

Liu Liu
UMass Amherst

liuliu@ecs.umass.edu

Jiangtao Yin
UMass Amherst

jyin@ecs.umass.edu

Lixin Gao
UMass Amherst

lgao@ecs.umass.edu

ABSTRACT
Social network data analysis becomes increasingly impor-
tant for business intelligence and online social services. Lots
of social network data is presented by Resource Descrip-
tion Framework (RDF). Accordingly, SPARQL, an RDF
query language, becomes popular for social network data
analysis. As the sizes of social networks expand rapidly,
a SPARQL query usually involves a large quantity of data,
and thus parallelizing its execution is desirable. MapReduce
is a well-known and popular big data analysis tool. How-
ever, the state-of-the-art translation from SPARQL queries
to MapReduce jobs is not efficient because it mainly follows
a two layer rule which needs to transform the SPARQL triple
pattern to the standard SQL join. In this paper, we propose
two primitives to enable efficient translation from SPARQL
queries to MapReduce jobs. We use multiple-join-with-filter
to substitute traditional SQL multiple join when feasible,
and merge different stages in the query workflow. The eval-
uation on social network data benchmarks shows that the
translation based on these two primitives can achieve up to
2x speedup in query running time comparing to the tradi-
tional two layer scheme.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query process-
ing

General Terms
Design, Experimentation, Performance

Keywords
MapReduce; RDF; SPARQL; query processing

1. INTRODUCTION
As social networks become more popular, social network

data analysis is increasingly important. In order to improve

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotPlanet’13, August 16, 2013, Hong Kong, China.
Copyright 2013 ACM 978-1-4503-2177-8/13/08 ...$15.00.

the integration and reuse of the data, many social network
providers start to use the semantic web data model, Re-
source Description Framework (RDF), to present the data.
Many organizations have published social network data in
the RDF format. The Friend of a Friend (FOAF) [6] project
aims to create a Web of machine-readable pages for describ-
ing people, where the links represent relationships between
people and the things they do. Facebook’s Open Graph [4]
allows applications to connect with real world actions and
objects. Freebase [3] is an online collection of structured
data across different domains such as music, movie, peo-
ple, and so on. DBpedia [2] extracts structured content
from Wikipedia and makes it available on the Web, so as to
allow users to find the information spread across different
Wikipedia articles.

When being represented in the RDF format, social net-
work data consists of a set of triples. Figure 1 shows a
few triples which are used to describe the city of Berlin in
DBpedia. Publishing the social network data in the RDF
format facilitates meaningful and easy-structured queries.
For example, DBpedia makes it possible to ask a query
like “list all computer scientists who live in Berlin”. These
queries are usually written in the W3C-endorsed SPARQL
language [18].

Berlin dbpedia-owl:country dbpedia:Germany

Berlin dbpedia-owl:leader dbpedia:Klaus_Wowereit

Berlin dbpedia-owl:populationTotal 3499879

Figure 1: Sample triples from DBpedia.

The size of social network data is huge and is increas-
ing rapidly. For example, DBpedia has 1 billion triples in
Version 3.7 but 1.89 billion triples in Version 3.8. Answer-
ing a SPARQL query from billions of triples in reasonable
time is challenging. Distributed frameworks such as MapRe-
duce [7] allow parallel processing on massive data using a
large cluster of commodity machines. MapReduce provides
a simple and flexible programming model and hides the dis-
tributed execution of computation from users. Therefore, it
is a promising tool for processing SPARQL queries on so-
cial network data. However, existing methods of translating
SPARQL queries into MapReduce workflow are not efficient.
They rely on translating the SPARQL query into a series of
SQL joins first, and then map the SQL join flow directly to
MapReduce jobs. This two layer mapping is actually unnec-
essary and inefficient.

In this paper, we propose two primitives to enable efficient
translation from SPARQL queries to MapReduce jobs. Our
first primitive is multiple-join-with-filter, which can substi-
tute SQL multiple join when feasible. The second primitive

is to merge the SELECTION stage with the JOIN stage,
which can make better use of the flexibility of the MapRe-
duce model. By employing these two primitives on SPARQL
queries, we can achieve better query performance with less
jobs and intermediate tables.
The prototype of our primitives is implemented on Hadoop

[1]. We evaluated various queries on two social network
benchmarks with different data sizes. The results show that
our primitives can achieve up to 2x speedup compared to
the traditional two layer mapping method.

2. TRANSLATION FROM SPARQL
TO MAPREDUCE

In this section, we first discuss the existing methodology
used to translate a SPARQL query to MapReduce workflow
based on SQL join operations. Then we illustrate the limi-
tations of the current solutions.

2.1 Current Translation Methods
A SPARQL query consists of elementary search condi-

tions (i.e., triple patterns or triplets). Each pattern is a
triplet where one or more of its components are variables.
SPARQL query processing is executed mainly using rela-
tional operators such as join, since search conditions in the
query usually share some unknown variables. A series of
join operations can be used iteratively on different shared
variables to select the intersection from variable sets repre-
sented by triple patterns. In order to obtain operands for
the join operations, the most common way is to parse the
RDF data once and generate base tables, each correspond-
ing to one triple pattern in the SPARQL query. This logic
stage, in which base tables are generated as the operands for
the later JOIN stage, is commonly known as SELECTION.

Figure 2: Targeted advertisement.

The SELECTION stage scans the data and emits the qual-
ified shared variables to form the base tables. Each base
table corresponds to one triple pattern. Take the query
shown in Figure 2 as an example. This query can be used
in online social networks such as Facebook for targeted ad-
vertisement. It aims to find users who are from a specific
area and are close friends to the users who are interested in
a certain product. If both the user and his/her friend are
tagged in the same photos recently posted, they are consid-
ered as close friends. The SELECTION stage generates 6
base tables which correspond to hasInterest(?User), locate-
dAt(?Friend), laterThan(?Photo), friendOf(?User?Friend),
taggedBy(?User?Photo) and taggedBy(?Friend?Photo). Th-
ese base tables are then stored as the intermediate files, and
will be joined in the following JOIN stage. Current method-
ologies directly map this logic SELECTION to a MapRe-
duce job. The map phase output key is the triple pattern
ID, and the output value is the matched shared variables.
The reduce phase collects shared variables with the same
triple pattern ID to form base tables and writes them into
a file system.

Although all the current methods share the same SELEC-
TION stage, the later JOIN stage varies. The naive pair-
wise join method [13] joins the base tables in a pairwise
manner and translates each logic join into one MapReduce
job. This method does not fully exploit the feature of mul-
tiple shared variables, which can be joined using multiple
join concepts in SQL. The later works [15, 19] adopt the
multiple join mechanism. Especially, [19] adopts multiple
join as the first join operation when possible, but due to
the rules of the SQL join, later joins are all pairwise. This
kind of translation represents the typical two layer mapping
method. The MapReduce join workflow of the targeted ad-
vertisement query using this method is illustrated in Figure
3, which needs 4 jobs in total.

Figure 3: Two layer mapping.

2.2 Limitations of Current Methods
Current two layer mapping is not efficient since it results

in unnecessary MapReduce jobs. This is mainly because
the traditional SQL join operator’s semantic does not fit
into the join use cases in SPARQL query processing well.
The number of base tables covered in each join is therefore
limited, which leads to more MapReduce jobs.

Besides the JOIN stage translation, the SELECTION stage
translation is also not efficient. Current methods directly
map the SELECTION into one MapReduce job, and use
the generated base tables as the later stage’s input. In fact,
it is more efficient to take advantage of the flexible MapRe-
duce model to merge the SELECTION into JOIN so as to
eliminate an individual job for the SELECTION.

3. TWO MAPREDUCE PRIMITIVES FOR
SPARQL QUERIES

In this section, we describe our mechanism to optimize
the MapReduce processing for SPARQL queries. It mainly
consists of two primitives: (1) using multiple-join-with-filter
to substitute SQL join when feasible; (2) merging the SE-
LECTION stage’s job into the JOIN stage’s job by adopting
a Select-Join job.

3.1 Multiple-join-with-filter Primitive
We have observed the different join use cases between

SPARQL and SQL query processing. In SQL, each table
represents one type of real-world objects. Schema is well
designed for each table to minimize the data redundancy.
In contrast, base tables are generated by triple patterns in
SPARQL, which may lead to duplicated fields among differ-
ent base tables caused by different predicates between the
same subject and object. Take one simple example: two
people ?A and ?B represented by subject and object within
triplets may have different relationships represented by pred-
icates such as relative, friend, colleague and so on. There-
fore, finding pairs of people with these relationships leads to

base tables corresponding to different relationships but all
having the same fields ?A?B.
The join operations can be performed efficiently using

the MapReduce programming model. Suppose we have a
SPARQL query with 4 base tables: ?X?Y, ?X?Y, ?X?Z and
?X?Z, where the duplicated fields are caused by different
predicates as illustrated above. Current methods based on
SQL will join ?X?Y and ?X?Z separately first, and then join
their results on field ?X. Each join operation corresponds to
one MapReduce job. In fact, there exists a more efficient op-
eration under this circumstance which better leverages the
flexibility of the MapReduce programming model. We can
join all base tables on ?X, and filter out entries with differ-
ent values of duplicated ?Y and ?Z fields simultaneously,
which needs only one job. We name this kind of operation
multiple-join-with-filter. By applying this primitive, we can
construct query workflow with less MapReduce jobs.

3.1.1 Semantics of Multiple-join-with-filter
Different from the SQL multiple join, which has only one

join key, the multiple-join-with-filter primitive allows to de-
fine another “filter key”. The filter key is defined on fields
(other than the join key) among the subset of the tables
participating in the multiple join. It is responsible for fur-
ther filtering the entries calculated by traditional multiple
join. Note that the filter key can be empty. In that case, we
just use the SQL multiple join. This operation’s syntax is
described as follows:

Multiple Join [tables] on [Join Key]
Filter on [Filter Key]
Dump Result to [MT]

Consider the example appeared in the previous targeted
advertisement query (Figure 2). After joining on ?User, we
need to join ?User?Friend?Photo, ?Friend and ?Friend?Photo
on ?Friend. Multiple-join-with-filter can be adopted in the
following way:

Multiple Join [?Friend, ?Friend?Photo,
?User?Friend?Photo] on [?Friend]

Filter on [?Photo]
Dump Result to [?User?Photo]

In this example, multiple-join-with-filter uses ?Friend as
the join key. At the same time, all the resulted entries
with different values of ?Photo from ?User?Friend?Photo
and ?Friend?Photo are filtered out. Multiple-join-with-filter
uses ?Photo as the filter key. Similar with the SQL multiple
join, multiple-join-with-filter can also be implemented using
one MapReduce job. The new query execution plan for tar-
geted advertising is shown in Figure 4. Compared with the
two layer mapping, it has less jobs (3 vs. 4). This is be-
cause the multiple-join-with-filter job substitutes both joins
on ?Friend?Photo and ?Friend along the query path with
one MapReduce job.

3.1.2 MapReduce Model of Multiple-join-with-filter
When SQL joins are implemented on MapReduce, one

SQL join needs one MapReduce job, which is widely used in
different database related applications. The most common
and flexible join model in MapReduce is called reduce-side
join. In the reduce-side join, map phase output key is the
join key, and the value consists of other fields in the same
entry. The value fields are tagged with the source table ID.

Figure 4: One layer Mapping.

In the reduce phase, all entries with the same join key are
aggregated on the same reducer. Then cartesian product
will be conducted for each key according to the value’s tag,
which is the source table ID.

Similar with the traditional SQL multiple join, multiple-
join-with-filter can also be implemented within one MapRe-
duce job. The difference is that the filter key should also
be tagged in the map phase, so as to allow the reducer to
identify it. When performing the cartesian product, the re-
duce function will identify the filter key through the tag. If
all filter keys from different tables are the same, then the
current entry is qualified to be concatenated and output to
the file system.

3.2 Select-Join Primitive
In the traditional two layer mapping, the SELECTION

stage is translated to one independent MapReduce job in-
dividually. However, this direct mapping from the SELEC-
TION stage to one job is not efficient. In fact, the flexibility
of the MapReduce programming model allows to generate
base tables and conduct join simultaneously. As a result, we
no longer need an individual job for the SELECTION stage.
This new hybrid stage in which the SELECTION stage is
integrated into the JOIN stage is referred to as Select-Join
primitive.

To merge SELECTION into JOIN in one MapReduce job,
(key, value) pairs for them should be differentiated sepa-
rately. For this reason, we built two groups of map and re-
duce routines in the Select-Join primitive. One group called
Select group is used to generate base tables. The Select
group behaves as the original SELECTION stage. The other
group called Join group is responsible for the join operation.
The map phase will scan the RDF data to match each qual-
ified triplet of which the corresponding base table attends
the first join operation. These triplets will then be handled
by the Join group. In the Join group, multiple-join-with-
filter is used if feasible. The remaining triplets, which are
not processed in the first join operation, are written into the
file system as base tables by the Select group. The syntax
of Select-Join is described as follows:

Select on [triplets A]
Multiple Join [triplets B] on [Join Key]

Filter on [Filter Key]
Dump Result to [ST]

In the Select group, we further adopt another optimiza-
tion which is referred to as Skip Write. Compared with the
previous work, such as [15], in which base tables have to be
shuffled to reduce side, we totally eliminate the shuffle step
for base table generation. Instead, all base tables are writ-
ten directly into the file system from the map side, bypassing
the reduce side.

Now we illustrate how Select-Join works by showing two
concrete examples, with single and multiple shared variables.
The first example represents a SPARQL query with a single
shared variable, shown in Figure 5.

Figure 5: Finding hot topics.

This query figures out recent hot topics in a social net-
work, such as Facebook. Since it has one shared variable
?Post, we only need one join on ?Post to obtain the query
result. It can be achieved with one MapReduce job by merg-
ing the SELECTION stage into the JOIN stage. All the
triple patterns will participate in the Join group. The Se-
lect group is not employed in this case, since no base tables
need to be generated. Actually, all SPARQL queries with
one shared variable can be done within one MapReduce job,
which totally eliminates the intermediate data. This kind
of SPARQL queries is very common in daily social applica-
tions, and is usually referred to as Star Pattern.

Figure 6: Finding zombie accounts.

Next, we check the SPARQL query shown in Figure 6,
which has multiple shared variables. This query finds the
zombie accounts defined by the administrator. Here, “sta-
tus” means any action, such as post, comment, or tag cer-
tain accounts have done. Notice here we have more than
one shared variables. It cannot be handled using only one
MapReduce job. In this example, we assume to join ?User
first. The Select group in the Select-Join will output one
base table corresponding to the triple pattern with ID 3.
The Join group, on the other hand, joins on ?User through
triple patterns with ID 1 and 2, and then writes the inter-
mediate tables into the file system.

3.3 Workflow Generation
In this subsection, we illustrate our mapping algorithm,

which translates SPARQL queries into MapReduce work-
flow, based on the two proposed primitives.
Our mapping algorithm processes variables in the triplets

one by one. Each time, it joins the current shared variable
that appears the most frequently. The algorithm launches
one SQL join or one multiple-join-with-filter job for this
shared variable. The SELECTION stage will always be
merged into the first join. To do that, we build two map
and reduce routines: one for selection and the other one for
the first join. These two routines are integrated to generate
the first MapReduce job. Whether the multiple-join-with-
filter primitive is feasible depending on whether there is a
valid filter key. This is done by counting the appearance of
each shared variable except the join key among the partici-
pating triplets. If we find any shared variable appearing at
more than one triplets being joined, we put them together
to form the filter key.
The join result will be further joined with the remained

base tables not covered yet following the same rule until
all the base tables are processed. If it encounters the case

where several shared variables have the same appearance
times, the mapping algorithm will break the tie arbitrarily.
Because finding optimal join sequence is not our focus in this
paper, we leave this problem for further research. Once the
final result can be generated, the mapping algorithm returns
the final MapReduce workflow. The mapping algorithm is
shown in Algorithm 1.

Algorithm 1: WorkflowGeneration(Q)

input : A SPARQL query Q (a set of triplets)
output: MapReduce workflow W

v = mostFrequentV ariable(Q); /* join key */1

tp1 = triplets in Q not sharing v; /* for Select */2

tp2 = triplets in Q sharing v; /* for Join */3

fk = variables other than v appear at more than one4

triplets in tp2; /* filter key */

job =“Select on”+ tp1 + “Multiple Join”+ tp2 + “Join5

on” + v + “Filter on” + fk + “Dump Result to” + ST ;
/* ST is a set of tables */

W.append(job);6

while ST.size() > 1 do7

/* the last table corresponding to the final

result */

V A = correspondingV ariables(ST);8

v = mostFrequentV ariable(V A);9

tb = tables in ST sharing v;10

fk = variables other than v appear at more than11

one tables in tb;
job = “Multiple Join” + tb + “Join on” + v +12

“Filter on” + fk + “Dump Result to” + MT ;
W.append(job);13

remove tb from ST ;14

add MT to ST ;15

return W ;16

4. EVALUATION
In this section, we demonstrate the performance of our

proposed primitives. Our system is built on top of Hadoop.
We evaluate both of the proposed primitives on social net-
work benchmarks.

4.1 Experimental Setup
4.1.1 Cluster Setup
We deploy our system on a cluster with 4 physical nodes.

Each node is equipped with a Xeon E5607 Quad Core 2.27GHz
CPU, 4GB memory and 1Gb network card. All of the nodes
are connected to one Gbps Ethernet switch.

The Hadoop framework is configured with 3 replicated
blocks and a block size of 64MB. In the original SELEC-
TION job, the number of reducers is set to the number of
triple patterns in the query. In all other cases, the number
of reducers is set to 8.

4.1.2 Benchmark and Dataset Generation
We adopt two benchmarks: Social Network Intelligence

Benchmark (SNIB) [5] and Lehigh University Benchmark
(LUBM) [9]. Each of them represents one type of social net-
works. SNIB simulates a small Facebook/Twitter style on-
line social network. The data is extracted from public data
sources such as DBpedia [2] and FOAF [6]. It basically has
all core elements in a social network system, such as user,

(a) Find hot topics (b) Find zombie accounts (c) Targeted Advertising

Figure 7: Performance evaluation on SNIB dataset.

(a) LUBM query 4 (b) LUBM query 8 (c) LUBM query 9

Figure 8: Performance evaluation on LUBM dataset.

friendship, post, photo and tag. LUBM represents a network
of university systems, in which all the entities in the univer-
sity, such as student, professor and course are described in
a format of triples. It is also attached with 14 SPARQL
queries, which are intensively used to test SPARQL query
engine performance.
SNIB dataset is generated using S3G2 [17], and 3 online

social network datasets with 2000, 4000 and 8000 users are
generated. LUBM dataset is generated using LUBMft [14].
We use its attached UBAft data generator with “-names”
flag on to generate 3 datasets with real people names; each
consists of 500, 1000 and 1500 universities separately. The
RDF2RDF tool is then used to convert the OWL files into N-
Triples (.nt) RDF serialization. All datasets are summarized
in Table 1.

Table 1: Datasets Summary
Name # of triples Size

SNIB-2000 99,996,099 4.5GB
SNIB-4000 199,069,668 9.02GB
SNIB-8000 397,631,187 18.11GB
LUBM-500 85,821,591 7.14GB
LUBM-1000 171,782,401 14.32GB
LUBM-1500 257,501,329 21.6GB

4.2 Performance Evaluation
The SPARQL queries actually have some fixed basic graph

patterns [11]. In order to show our performance more sys-
tematically, we categorize our test queries into 3 classes ac-
cording to their number of MapReduce jobs in the query
workflow. Each class actually corresponds to one common
basic graph pattern, namely star pattern, chain pattern and
triangle pattern. We deal with them incrementally to show
our performance improvement, since each of them benefits
differently from our primitives.

4.2.1 Star Pattern
All of the SPARQL queries with star pattern can benefit

from the Select-Join primitive. Since there is only one shared
variable in the SPARQL query, we can finish the query in one
job. Figures 7a and 8a show the performance comparison for
the previous finding hot topics query (Figure 5) and LUBM
query 4.

The Select-Join primitive reduces the MapReduce job from
2 to 1 for the star pattern, and no intermediate data will be
generated. We can observe that it outperforms the two layer
mapping translation with 1.5x speedup on the finding hot
topic query, and that it has even better improvement on
LUBM query 4. This is because the selectivity of the origi-
nal SELECTION stage on LUBM query 4 is relatively low.
Therefore, the following join job has more data to read and
shuffle. As a consequence, by eliminating intermediate files
and the duplicated process, the primitive gains more perfor-
mance improvement on it than on the hot topic query, which
has relatively high selectivity.

4.2.2 Chain Pattern
The chain pattern is more complex than the star pattern.

It has more than one shared variables, and thus cannot be
completed by one MapReduce job. Because the Select-Join
primitive needs to write base tables for the later JOIN stage
in this case, the chain pattern also benefits from the Skip
Write optimization built in the Select group. Figures 7b and
8b show the performance comparison for the finding zombie
accounts query (Figure 6) and LUBM query 8.

The Skip Write optimization avoids the unnecessary shuf-
fle when generating base tables. As a result, Select-Join
(with Skip Write) costs less amount of time than the ver-
sion without Skip Write. The time that Skip Write saves is
relatively proportional to the size of base tables Select-Join
needs to generate.

4.2.3 Triangle Pattern
The triangle pattern is the most complex pattern in our

test queries. It benefits from both the multiple-join-with-
filter primitive and the Select-Join primitive. We show the
performance improvement for different primitives separately
in Figures 7c and 8c for the previous targeted advertisement
query (Figure 2) and LUBM query 9. Both primitives to-
gether achieve 2x speedup comparing to the traditional two
layer mapping method.

5. RELATED WORK
Lots of works have been done in translating SQL into

MapReduce workflow. Well-known ones include Pig [16]
and Hive [20]. Based on Hive’s query translation rule which
maps each SQL sub-query to one MapReduce job, [12] intro-
duces a job aggregation mechanism. It merges sub-queries
sharing the same keys into one job to reduce the total num-
ber of jobs in the query workflow.
However, fewer works [10, 13, 15, 19, 21] focus on building

efficient parallel SPARQL query execution engine. More-
over, none of them presents the primitives proposed in this
paper. Those works can be categorized into two classes: us-
ing existing RDF storage solution, or building the engine
from the ground up. In the first class, [15], [19] and [13] are
all based on using SQL join to simulate the SPARQL pro-
cessing. [13] is the earliest work to leverage MapReduce in
semantic webs. It shows the feasibility of using the MapRe-
duce model to conduct SPARQL queries. Since it adopts
the naive pairwise join, the number of MapReduce jobs is
unnecessarily more than needed. In [19], the authors dis-
cuss an indexing method using HBase [8] and a query plan
determination scheme based on SQL. As the most relevant
work, [15] provides a MapReduce mechanism to concurrently
join shared variables in a greedy manner. This mechanism
can significantly reduce the number of MapReduce jobs, but
in fact, it suffers from huge intermediate tables.
In the second class, each of [10] and [21] builds a graph

store and the corresponding query engine from the ground
up. By making use of their optimized storage pattern, they
can adapt the SPARQL query execution to the graph store
so as to obtain better performance.

6. CONCLUSION
In this paper, we propose two primitives to optimize SPARQL

queries on social network data using MapReduce. They con-
sist of the multiple-join-with-filter primitive, which can re-
place the traditional SQL multiple join when feasible, and
the Select-Join primitive. Based on these two primitives, we
further present a query translation algorithm to translate
SPARQL queries into MapReduce jobs. By adopting our
primitives, we can efficiently reduce the number of MapRe-
duce jobs and the amount of intermediate files. The eval-
uation results show that our primitives can achieve up to
2x speedup compared to the traditional two layer mapping
method. In the future work, we plan to investigate the join
order within our workflow translation to explore the feasi-
bility of even better query performance.

Acknowledgments
The authors are grateful to the anonymous reviewers for
their comments and suggestions. This work is partially sup-
ported by NSF grants CCF-1018114 and CNS-1217284.

7. REFERENCES
[1] Apache Hadoop. http://hadoop.apache.org/.

[2] DBpedia. http://dbpedia.org.

[3] Freebase. http://www.freebase.com/.

[4] Open Graph. https:
//developers.facebook.com/docs/opengraph/.

[5] Social Network Intelligence Benchmark.
http://www.w3.org/wiki/Social_Network_

Intelligence_BenchMark.

[6] The Friend of a Friend (FOAF) project.
http://www.foaf-project.org/.

[7] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

[8] L. George. HBase: The Definitive Guide. O’Reilly
Media, 2011.

[9] Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark
for OWL knowledge base systems. Web Semantics:
Science, Services and Agents on the World Wide Web,
3(2):158–182, 2005.

[10] J. Huang, D. J. Abadi, and K. Ren. Scalable
SPARQLquerying of large RDF graphs. VLDB
Endowment, 4(11), 2011.

[11] W. Le, A. Kementsietsidis, S. Duan, and F. Li.
Scalable multi-query optimization for SPARQL. In
ICDE ’12, pages 666–677. IEEE, 2012.

[12] R. Lee, T. Luo, Y. Huai, F. Wang, Y. He, and
X. Zhang. Ysmart: Yet another SQL-to-MapReduce
translator. In ICDCS ’11, pages 25–36. IEEE, 2011.

[13] P. Mika and G. Tummarello. Web semantics in the
clouds. Intelligent Systems, IEEE, 23(5):82–87, 2008.

[14] E. Minack, W. Siberski, and W. Nejdl. Benchmarking
fulltext search performance of RDF stores. The
Semantic Web: Research and Applications, pages
81–95, 2009.

[15] J. Myung, J. Yeon, and S.-g. Lee. SPARQL basic
graph pattern processing with iterative MapReduce.
In Proceedings of the 2010 Workshop on Massive Data
Analytics on the Cloud, page 6. ACM, 2010.

[16] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: A not-so-foreign language for
data processing. In SIGMOD ’08, pages 1099–1110.
ACM, 2008.

[17] M.-D. Pham, P. Boncz, and O. Erling. S3G2: A
Scalable Structure-Correlated Social Graph Generator.
In Selected Topics in Performance Evaluation and
Benchmarking, pages 156–172. Springer, 2013.

[18] E. Prud’ Hommeaux, A. Seaborne, et al. SPARQL
query language for RDF. W3C recommendation, 15,
2008.

[19] J. Sun and Q. Jin. Scalable RDF store based on
HBase and MapReduce. In ICACTE ’10, volume 1.
IEEE, 2010.

[20] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive:
a warehousing solution over a map-reduce framework.
VLDB Endowment, 2(2):1626–1629, 2009.

[21] K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang. A
Distributed Graph Engine for Web Scale RDF Data.
VLDB Endowment, 6(4), 2013.

